Advertisement

Magnetic Resonance Imaging Evaluation of Complex Congenital Heart Disease

  • Ashwin Prakash
  • Tal GevaEmail author
Chapter
Part of the Contemporary Cardiology book series (CONCARD)

Abstract

Cardiac magnetic resonance (CMR) plays an important role in the evaluation of patients with complex congenital heart disease. It overcomes many of the limitations of echocardiography (e.g., restricted acoustic windows), computed tomography (e.g., exposure to ionizing radiation, limited functional information), and cardiac catheterization (e.g., exposure to ionizing radiation, morbidity, high cost). This chapter discusses the role of CMR in the evaluation of patients with conotruncal malformations (tetralogy of Fallot, transposition of the great arteries, truncus arteriosus, and interrupted aortic arch) and patients with single ventricle heart disease. For each of these congenital defects, the role of CMR during preoperative evaluation and for postoperative surveillance is discussed. Long-term morbidities commonly associated with each condition are described. A suggested CMR imaging protocol for each defect is provided.

Keywords

Cardiac magnetic resonance Congenital heart disease Conotruncal malformations Single ventricle Tetralogy of Fallot Transposition of the great arteries 

References

  1. 1.
    Prakash A, Powell AJ, Geva T. Multimodality noninvasive imaging for assessment of congenital heart disease. Circ Cardiovasc Imaging. 2010;3:112–25.PubMedCrossRefGoogle Scholar
  2. 2.
    Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39:1890–900.PubMedCrossRefGoogle Scholar
  3. 3.
    Van Praagh R, Van Praagh S, Nebesar RA, Muster AJ, Sinha SN, Paul MH. Tetralogy of Fallot: underdevelopment of the pulmonary infundibulum and its sequelae. Am J Cardiol. 1970;26:25–33.PubMedCrossRefGoogle Scholar
  4. 4.
    Van Praagh R. Etienne-Louis. Arthur Fallot and his tetralogy: a new translation of Fallot’s summary and a modern reassessment of this anomaly. Eur J Cardiothorac Surg. 1989;3:381–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Lai WW, Mettens LL, Cohen MS, Geva T, editors. Echocardiography in pediatric and congenital heart disease: from fetus to adult. Chichester: Blackwell Publishing Ltd; 2009.Google Scholar
  6. 6.
    Van Praagh R, Geva T, Kreutzer J. Ventricular septal defects: how shall we describe, name and classify them? J Am Coll Cardiol. 1989;14:1298–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Flanagan MF, Foran RB, Van Praagh R, Jonas R, Sanders SP. Tetralogy of Fallot with obstruction of the ventricular septal defect: spectrum of echocardiographic findings. J Am Coll Cardiol. 1988;11:386–95.PubMedCrossRefGoogle Scholar
  8. 8.
    Need LR, Powell AJ, del Nido P, Geva T. Coronary echocardiography in tetralogy of Fallot: diagnostic accuracy, resource utilization and surgical implications over 13 years. J Am Coll Cardiol. 2000;36:1371–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Lu JH, Chung MY, Betau H, Chien HP, Lu JK. Molecular characterization of tetralogy of Fallot within Digeorge critical region of the chromosome 22. Pediatr Cardiol. 2001;22:279–84.PubMedCrossRefGoogle Scholar
  10. 10.
    Marino B, Digilio MC, Toscano A, et al. Anatomic patterns of conotruncal defects associated with deletion 22q11. Genet Med. 2001;3:45–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Momma K, Takao A, Matsuoka R, et al. Tetralogy of Fallot associated with chromosome 22q11.2 deletion in adolescents and young adults. Genet Med. 2001;3:56–60.PubMedCrossRefGoogle Scholar
  12. 12.
    Boudjemline Y, Fermont L, Le Bidois J, Lyonnet S, Sidi D, Bonnet D. Prevalence of 22q11 deletion in fetuses with conotruncal cardiac defects: a 6-year prospective study. J Pediatr. 2001;138:520–4.PubMedCrossRefGoogle Scholar
  13. 13.
    Goldmuntz E, Geiger E, Benson DW. NKX2.5 mutations in patients with tetralogy of Fallot. Circulation. 2001;104:2565–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Hokanson JS, Pierpont E, Hirsch B, Moller JH. 22q11.2 microdeletions in adults with familial tetralogy of Fallot. Genet Med. 2001;3:61–4.PubMedCrossRefGoogle Scholar
  15. 15.
    McElhinney DB, Krantz ID, Bason L, et al. Analysis of cardiovascular phenotype and genotype-phenotype correlation in individuals with a JAG1 mutation and/or Alagille syndrome. Circulation. 2002;106:2567–74.PubMedCrossRefGoogle Scholar
  16. 16.
    Masuda K, Nomura Y, Yoshinaga M, et al. Inverted duplication/deletion of the short arm of chromosome 8 in two patients with tetralogy of Fallot. Pediatr Int. 2002;44:534–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Grunert M, Dorn C, Schueler M, et al. Rare and private variations in neural crest, apoptosis and sarcomere genes define the polygenic background of isolated tetralogy of Fallot. Hum Mol Genet. 2014;23:3115–28.PubMedCrossRefGoogle Scholar
  18. 18.
    Marino B, Digilio MC, Grazioli S, et al. Associated cardiac anomalies in isolated and syndromic patients with tetralogy of Fallot. Am J Cardiol. 1996;77:505–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Geva T, Ayres NA, Pac FA, Pignatelli R. Quantitative morphometric analysis of progressive infundibular obstruction in tetralogy of Fallot. A prospective longitudinal echocardiographic study. Circulation. 1995;92:886–92.PubMedCrossRefGoogle Scholar
  20. 20.
    Kaulitz R, Jux C, Bertram H, Paul T, Ziemer G, Hausdorf G. Primary repair of tetralogy of Fallot in infancy—the effect on growth of the pulmonary arteries and the risk for late reinterventions. Cardiol Young. 2001;11:391–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Bacha EA, Scheule AM, Zurakowski D, et al. Long-term results after early primary repair of tetralogy of Fallot. J Thorac Cardiovasc Surg. 2001;122:154–61.PubMedCrossRefGoogle Scholar
  22. 22.
    Murphy JG, Gersh BJ, Mair DD, et al. Long-term outcome in patients undergoing surgical repair of tetralogy of Fallot. N Engl J Med. 1993;329:593–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Nollert G, Fischlein T, Bouterwek S, Bohmer C, Klinner W, Reichart B. Long-term survival in patients with repair of tetralogy of Fallot: 36-year follow-up of 490 survivors of the first year after surgical repair. J Am Coll Cardiol. 1997;30:1374–83.PubMedCrossRefGoogle Scholar
  24. 24.
    Saul JP, Alexander ME. Preventing sudden death after repair of tetralogy of Fallot: complex therapy for complex patients. J Cardiovasc Electrophysiol. 1999;10:1271–87.PubMedCrossRefGoogle Scholar
  25. 25.
    Kugler JD. Predicting sudden death in patients who have undergone tetralogy of Fallot repair: is it really as simple as measuring ECG intervals? J Cardiovasc Electrophysiol. 1998;9:103–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Bricker JT. Sudden death and tetralogy of Fallot. Risks, markers, and causes. Circulation. 1995;92:158–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Gatzoulis MA, Till JA, Somerville J, Redington AN. Mechanoelectrical interaction in tetralogy of Fallot. QRS prolongation relates to right ventricular size and predicts malignant ventricular arrhythmias and sudden death. Circulation. 1995;92:231–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Berul CI, Hill SL, Geggel RL, et al. Electrocardiographic markers of late sudden death risk in postoperative tetralogy of Fallot children. J Cardiovasc Electrophysiol. 1997;8:1349–56.PubMedCrossRefGoogle Scholar
  29. 29.
    Hokanson JS, Moller JH. Significance of early transient complete heart block as a predictor of sudden death late after operative correction of tetralogy of Fallot. Am J Cardiol. 2001;87:1271–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Hamada H, Terai M, Jibiki T, Nakamura T, Gatzoulis MA, Niwa K. Influence of early repair of tetralogy of Fallot without an outflow patch on late arrhythmias and sudden death: a 27-year follow-up study following a uniform surgical approach. Cardiol Young. 2002;12:345–51.PubMedCrossRefGoogle Scholar
  31. 31.
    Mackie AS, Gauvreau K, Perry SB, del Nido PJ, Geva T. Echocardiographic predictors of aortopulmonary collaterals in infants with tetralogy of Fallot and pulmonary atresia. J Am Coll Cardiol. 2003;41:852–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Geva T, Greil GF, Marshall AC, Landzberg M, Powell AJ. Gadolinium-enhanced 3-dimensional magnetic resonance angiography of pulmonary blood supply in patients with complex pulmonary stenosis or atresia: comparison with x-ray angiography. Circulation. 2002;106:473–8.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Geva T. Repaired tetralogy of Fallot: the roles of cardiovascular magnetic resonance in evaluating pathophysiology and for pulmonary valve replacement decision support. J Cardiovasc Magn Reson. 2011;13:9.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Bonhoeffer P, Boudjemline Y, Saliba Z, et al. Percutaneous replacement of pulmonary valve in a right-ventricle to pulmonary-artery prosthetic conduit with valve dysfunction. Lancet. 2000;356:1403–5.PubMedCrossRefGoogle Scholar
  35. 35.
    McElhinney DB, Hellenbrand WE, Zahn EM, et al. Short- and medium-term outcomes after transcatheter pulmonary valve placement in the expanded multicenter US melody valve trial. Circulation. 2010;122:507–16.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Blalock SE, Banka P, Geva T, Powell AJ, Zhou J, Prakash A. Interstudy variability in cardiac magnetic resonance imaging measurements of ventricular volume, mass, and ejection fraction in repaired tetralogy of Fallot: a prospective observational study. J Magn Reson Imaging. 2013;38:829–35.PubMedCrossRefGoogle Scholar
  37. 37.
    Valente AM, Gauvreau K, Assenza GE, et al. Contemporary predictors of death and sustained ventricular tachycardia in patients with repaired tetralogy of Fallot enrolled in the INDICATOR cohort. Heart. 2014;100:247–53.PubMedCrossRefGoogle Scholar
  38. 38.
    Kilner PJ, Geva T, Kaemmerer H, Trindade PT, Schwitter J, Webb GD. Recommendations for cardiovascular magnetic resonance in adults with congenital heart disease from the respective working groups of the European Society of Cardiology. Eur Heart J. 2010;31:794–805.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Valente AM, Cook S, Festa P, et al. Multimodality imaging guidelines for patients with repaired tetralogy of Fallot: a report from the American Society of Echocardiography: developed in collaboration with the Society for Cardiovascular Magnetic Resonance and the Society for Pediatric Radiology. J Am Soc Echocardiogr. 2014;27:111–41.PubMedCrossRefGoogle Scholar
  40. 40.
    Van Praagh R. The importance of segmental situs in the diagnosis of congenital heart disease. Semin Roentgenol. 1985;20:254–71.PubMedCrossRefGoogle Scholar
  41. 41.
    Blume ED, Altmann K, Mayer JE, Colan SD, Gauvreau K, Geva T. Evolution of risk factors influencing early mortality of the arterial switch operation. J Am Coll Cardiol. 1999;33:1702–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Levinsky L, Srinivasan V, Alvarez-Diaz F, Subramanian S. Reconstruction of the new atrial septum in the Senning operation. New technique. J Thorac Cardiovasc Surg. 1981;81:131–4.PubMedGoogle Scholar
  43. 43.
    Myridakis DJ, Ehlers KH, Engle MA. Late follow-up after venous switch operation (Mustard procedure) for simple and complex transposition of the great arteries. Am J Cardiol. 1994;74:1030–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Redington AN, Rigby ML, Oldershaw P, Gibson DG, Shinebourne EA. Right ventricular function 10 years after the Mustard operation for transposition of the great arteries: analysis of size, shape, and wall motion. Br Heart J. 1989;62:455–61.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Deanfield J, Camm J, Macartney F, et al. Arrhythmia and late mortality after Mustard and Senning operation for transposition of the great arteries. An eight-year prospective study. J Thorac Cardiovasc Surg. 1988;96:569–76.PubMedGoogle Scholar
  46. 46.
    Van Praagh R, Jung WK. The arterial switch operation in transposition of the great arteries: anatomic indications and contraindications. Thorac Cardiovasc Surg. 1991;39(Suppl 2):138–50.PubMedCrossRefGoogle Scholar
  47. 47.
    Wernovsky G, Jonas RA, Colan SD, et al. Results of the arterial switch operation in patients with transposition of the great arteries and abnormalities of the mitral valve or left ventricular outflow tract. J Am Coll Cardiol. 1990;16:1446–54.PubMedCrossRefGoogle Scholar
  48. 48.
    Ruys TP, van der Bosch AE, Cuypers JA, et al. Long-term outcome and quality of life after arterial switch operation: a prospective study with a historical comparison. Congenit Heart Dis. 2013;8:203–10.PubMedCrossRefGoogle Scholar
  49. 49.
    Khairy P, Clair M, Fernandes SM, et al. Cardiovascular outcomes after the arterial switch operation for D-transposition of the great arteries. Circulation. 2013;127:331–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Angeli E, Formigari R, Pace Napoleone C, et al. Long-term coronary artery outcome after arterial switch operation for transposition of the great arteries. Eur J Cardiothorac Surg. 2010;38:714–20.PubMedCrossRefGoogle Scholar
  51. 51.
    Co-Vu JG, Ginde S, Bartz PJ, Frommelt PC, Tweddell JS, Earing MG. Long-term outcomes of the neoaorta after arterial switch operation for transposition of the great arteries. Ann Thorac Surg. 2013;95:1654–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Koolbergen DR, Manshanden JS, Yazdanbakhsh AP, et al. Reoperation for neoaortic root pathology after the arterial switch operation. Eur J Cardiothorac Surg. 2014;46:474–9; discussion 479.PubMedCrossRefGoogle Scholar
  53. 53.
    Chung KJ, Simpson IA, Glass RF, Sahn DJ, Hesselink JR. Cine magnetic resonance imaging after surgical repair in patients with transposition of the great arteries. Circulation. 1988;77:104–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Lorenz CH, Walker ES, Graham TP Jr, Powers TA. Right ventricular performance and mass by use of cine MRI late after atrial repair of transposition of the great arteries. Circulation. 1995;92:II233–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Hardy CE, Helton GJ, Kondo C, Higgins SS, Young NJ, Higgins CB. Usefulness of magnetic resonance imaging for evaluating great-vessel anatomy after arterial switch operation for D-transposition of the great arteries. Am Heart J. 1994;128:326–32.PubMedCrossRefGoogle Scholar
  56. 56.
    Beek FJ, Beekman RP, Dillon EH, et al. MRI of the pulmonary artery after arterial switch operation for transposition of the great arteries. Pediatr Radiol. 1993;23:335–40.PubMedCrossRefGoogle Scholar
  57. 57.
    Theissen P, Kaemmerer H, Sechtem U, et al. Magnetic resonance imaging of cardiac function and morphology in patients with transposition of the great arteries following mustard procedure. Thorac Cardiovasc Surg. 1991;39(Suppl 3):221–4.PubMedCrossRefGoogle Scholar
  58. 58.
    Rees S, Somerville J, Warnes C, et al. Comparison of magnetic resonance imaging with echocardiography and radionuclide angiography in assessing cardiac function and anatomy following Mustard’s operation for transposition of the great arteries. Am J Cardiol. 1988;61:1316–22.PubMedCrossRefGoogle Scholar
  59. 59.
    Tulevski II, Lee PL, Groenink M, et al. Dobutamine-induced increase of right ventricular contractility without increased stroke volume in adolescent patients with transposition of the great arteries: evaluation with magnetic resonance imaging. Int J Card Imaging. 2000;16:471–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Tulevski II, van der Wall EE, Groenink M, et al. Usefulness of magnetic resonance imaging dobutamine stress in asymptomatic and minimally symptomatic patients with decreased cardiac reserve from congenital heart disease (complete and corrected transposition of the great arteries and subpulmonic obstruction). Am J Cardiol. 2002;89:1077–81.PubMedCrossRefGoogle Scholar
  61. 61.
    Roest AA, Lamb HJ, van der Wall EE, et al. Cardiovascular response to physical exercise in adult patients after atrial correction for transposition of the great arteries assessed with magnetic resonance imaging. Heart. 2004;90:678–84.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Babu-Narayan SV, Goktekin O, Moon JC, et al. Late gadolinium enhancement cardiovascular magnetic resonance of the systemic right ventricle in adults with previous atrial redirection surgery for transposition of the great arteries. Circulation. 2005;111:2091–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Makowski MR, Wiethoff AJ, Uribe S, et al. Congenital heart disease: cardiovascular MR imaging by using an intravascular blood pool contrast agent. Radiology. 2011;260:680–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Raman FS, Nacif MS, Cater G, et al. 3.0-T whole-heart coronary magnetic resonance angiography: comparison of gadobenate dimeglumine and gadofosveset trisodium. Int J Cardiovasc Imaging. 2013;29:1085–94.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Strigl S, Beroukhim R, Valente AM, et al. Feasibility of dobutamine stress cardiovascular magnetic resonance imaging in children. J Magn Reson Imaging. 2009;29:313–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Van Praagh R, Papagiannis J, Grunenfelder J, Bartram U, Martanovic P. Pathologic anatomy of corrected transposition of the great arteries: medical and surgical implications. Am Heart J. 1998;135:772–85.PubMedCrossRefGoogle Scholar
  67. 67.
    Beauchesne LM, Warnes CA, Connolly HM, Ammash NM, Tajik AJ, Danielson GK. Outcome of the unoperated adult who presents with congenitally corrected transposition of the great arteries. J Am Coll Cardiol. 2002;40:285–90.PubMedCrossRefGoogle Scholar
  68. 68.
    Colli AM, de Leval M, Somerville J. Anatomically corrected malposition of the great arteries: diagnostic difficulties and surgical repair of associated lesions. Am J Cardiol. 1985;55:1367–72.PubMedCrossRefGoogle Scholar
  69. 69.
    Van Praagh R. What is congenitally corrected transposition? N Engl J Med. 1970;282:1097–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Murtuza B, Barron DJ, Stumper O, et al. Anatomic repair for congenitally corrected transposition of the great arteries: a single-institution 19-year experience. J Thorac Cardiovasc Surg. 2011;142:1348–57. e1PubMedCrossRefGoogle Scholar
  71. 71.
    Belli E, Serraf A, Lacour-Gayet F, et al. Surgical treatment of subaortic stenosis after biventricular repair of double-outlet right ventricle. J Thorac Cardiovasc Surg. 1996;112:1570–8; discussion 1578–80.PubMedCrossRefGoogle Scholar
  72. 72.
    Banka P, Schaetzle B, Komarlu R, Emani S, Geva T, Powell AJ. Cardiovascular magnetic resonance parameters associated with early transplant-free survival in children with small left hearts following conversion from a univentricular to biventricular circulation. J Cardiovasc Magn Reson. 2014;16:73.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Yoo SJ, Kim YM, Choe YH. Magnetic resonance imaging of complex congenital heart disease. Int J Card Imaging. 1999;15:151–60.PubMedCrossRefGoogle Scholar
  74. 74.
    Beekmana RP, Roest AA, Helbing WA, et al. Spin echo MRI in the evaluation of hearts with a double outlet right ventricle: usefulness and limitations. Magn Reson Imaging. 2000;18:245–53.PubMedCrossRefGoogle Scholar
  75. 75.
    Beekman RP, Beek FJ, Meijboom EJ, Wenink AC. MRI appearance of a double inlet and double outlet right ventricle with supero-inferior ventricular relationship. Magn Reson Imaging. 1996;14:1107–12.PubMedCrossRefGoogle Scholar
  76. 76.
    Igarashi H, Kuramatsu T, Shiraishi H, Yanagisawa M. Criss-cross heart evaluated by colour Doppler echocardiography and magnetic resonance imaging. Eur J Pediatr. 1990;149:523–5.PubMedCrossRefGoogle Scholar
  77. 77.
    Niezen RA, Beekman RP, Helbing WA, van der Wall EE, de Roos A. Double outlet right ventricle assessed with magnetic resonance imaging. Int J Card Imaging. 1999;15:323–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Sorensen TS, Korperich H, Greil GF, et al. Operator-independent isotropic three-dimensional magnetic resonance imaging for morphology in congenital heart disease: a validation study. Circulation. 2004;110:163–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Van Praagh R, Van Praagh S. The anatomy of common aorticopulmonary trunk (truncus arteriosus communis) and its embryologic implications. A study of 57 necropsy cases. Am J Cardiol. 1965;16:406–25.PubMedCrossRefGoogle Scholar
  80. 80.
    Collett RW, Edwards JE. Persistent truncus arteriosus: a classification according to anatomic types. Surg Clin North Am. 1949;29:1245–70.PubMedCrossRefGoogle Scholar
  81. 81.
    Litovsky SH, Ostfeld I, Bjornstad PG, Van Praagh R, Geva T. Truncus arteriosus with anomalous pulmonary venous connection. Am J Cardiol. 1999;83:801–4. A10PubMedCrossRefGoogle Scholar
  82. 82.
    Goldmuntz E, Clark BJ, Mitchell LE, et al. Frequency of 22q11 deletions in patients with conotruncal defects. J Am Coll Cardiol. 1998;32:492–8.PubMedCrossRefGoogle Scholar
  83. 83.
    Tworetzky W, McElhinney DB, Brook MM, Reddy VM, Hanley FL, Silverman NH. Echocardiographic diagnosis alone for the complete repair of major congenital heart defects. J Am Coll Cardiol. 1999;33:228–33.PubMedCrossRefGoogle Scholar
  84. 84.
    Fyler DC, Buckley LP, Hellenbrand WE, Cohn HE. Report of the New England regional infant cardiac program. Pediatrics. 1980;65:377–461.Google Scholar
  85. 85.
    Celoria GC, Patton RB. Congenital absence of the aortic arch. Am Heart J. 1959;58:407–13.PubMedCrossRefGoogle Scholar
  86. 86.
    Geva T, Gajarski RJ. Echocardiographic diagnosis of type B interruption of a right aortic arch. Am Heart J. 1995;129:1042–5.PubMedCrossRefGoogle Scholar
  87. 87.
    Kutsche LM, Van Mierop LH. Cervical origin of the right subclavian artery in aortic arch interruption: pathogenesis and significance. Am J Cardiol. 1984;53:892–5.PubMedCrossRefGoogle Scholar
  88. 88.
    Kaulitz R, Jonas RA, van der Velde ME. Echocardiographic assessment of interrupted aortic arch. Cardiol Young. 1999;9:562–71.PubMedCrossRefGoogle Scholar
  89. 89.
    Varghese A, Gatzoulis M, Mohiaddin RH. Images in cardiovascular medicine: magnetic resonance angiography of a congenitally interrupted aortic arch. Circulation. 2002;106:E9–10.PubMedCrossRefGoogle Scholar
  90. 90.
    Tsai-Goodman B, Geva T, Odegard KC, Sena LM, Powell AJ. Clinical role, accuracy, and technical aspects of cardiovascular magnetic resonance imaging in infants. Am J Cardiol. 2004;94:69–74.PubMedCrossRefGoogle Scholar
  91. 91.
    Nielsen J, Powell AJ, Gauvreau K, Marcus E, Geva T. Magnetic resonance imaging predictors of the hemodynamic severity of aortic coarctation. J Am Coll Cardiol. 2004;43:24A.CrossRefGoogle Scholar
  92. 92.
    Fontan F, Baudet E. Surgical repair of tricuspid atresia. Thorax. 1971;26:240–8.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Kreutzer GO, Vargas FJ, Schlichter AJ, et al. Atriopulmonary anastomosis. J Thorac Cardiovasc Surg. 1982;83:427–36.PubMedGoogle Scholar
  94. 94.
    Jonas RA, Castaneda AR. Modified Fontan procedure: atrial baffle and systemic venous to pulmonary artery anastomotic techniques. J Card Surg. 1988;3:91–6.PubMedCrossRefGoogle Scholar
  95. 95.
    Bridges ND, Mayer JE Jr, Lock JE, et al. Effect of baffle fenestration on outcome of the modified Fontan operation. Circulation. 1992;86:1762–9.PubMedCrossRefGoogle Scholar
  96. 96.
    Tireli E. Extracardiac Fontan operation without cardiopulmonary bypass: how to perform the anastomosis between inferior vena cava and conduit. Cardiovasc Surg. 2003;11:225–7.PubMedCrossRefGoogle Scholar
  97. 97.
    Gentles TL, Mayer JE Jr, Gauvreau K, et al. Fontan operation in five hundred consecutive patients: factors influencing early and late outcome. J Thorac Cardiovasc Surg. 1997;114:376–91.PubMedCrossRefGoogle Scholar
  98. 98.
    Wilson WR, Greer GE, Tobias JD. Cerebral venous thrombosis after the Fontan procedure. J Thorac Cardiovasc Surg. 1998;116:661–3.PubMedCrossRefGoogle Scholar
  99. 99.
    Day RW, Boyer RS, Tait VF, Ruttenberg HD. Factors associated with stroke following the Fontan procedure. Pediatr Cardiol. 1995;16:270–5.PubMedCrossRefGoogle Scholar
  100. 100.
    Jacobs ML. Complications associated with heterotaxy syndrome in Fontan patients. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2002;5:25–35.PubMedCrossRefGoogle Scholar
  101. 101.
    Lam J, Neirotti R, Becker AE, Planche C. Thrombosis after the Fontan procedure: transesophageal echocardiography may replace angiocardiography. J Thorac Cardiovasc Surg. 1994;108:194–5.PubMedGoogle Scholar
  102. 102.
    Deal BJ, Mavroudis C, Backer CL. Beyond Fontan conversion: surgical therapy of arrhythmias including patients with associated complex congenital heart disease. Ann Thorac Surg. 2003;76:542–53; discussion 553–4.PubMedCrossRefGoogle Scholar
  103. 103.
    Kreutzer J, Keane JF, Lock JE, et al. Conversion of modified Fontan procedure to lateral atrial tunnel cavopulmonary anastomosis. J Thorac Cardiovasc Surg. 1996;111:1169–76.PubMedCrossRefGoogle Scholar
  104. 104.
    Atz AM, Zak V, Mahony L, et al. Survival data and predictors of functional outcome an average of 15 years after the Fontan procedure: the pediatric heart network Fontan cohort. Congenit Heart Dis. 2014;10(1):E30–42.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    d’Udekem Y, Iyengar AJ, Galati JC, et al. Redefining expectations of long-term survival after the Fontan procedure: twenty-five years of follow-up from the entire population of Australia and New Zealand. Circulation. 2014;130:S32–8.PubMedCrossRefGoogle Scholar
  106. 106.
    Kutty SS, Peng Q, Danford DA, et al. Increased hepatic stiffness as consequence of high hepatic afterload in the Fontan circulation: a vascular Doppler and elastography study. Hepatology. 2014;59:251–60.PubMedCrossRefGoogle Scholar
  107. 107.
    Prakash A, Rathod RH, Powell AJ, McElhinney DB, Banka P, Geva T. Relation of systemic-to-pulmonary artery collateral flow in single ventricle physiology to palliative stage and clinical status. Am J Cardiol. 2012;109:1038–45.PubMedCrossRefGoogle Scholar
  108. 108.
    Prakash A, Travison TG, Fogel MA, et al. Relation of size of secondary ventricles to exercise performance in children after Fontan operation. Am J Cardiol. 2010;106:1652–6.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Khiabani RH, Whitehead KK, Han D, et al. Exercise capacity in single-ventricle patients after Fontan correlates with haemodynamic energy loss in TCPC. Heart. 2015;101(2):139–43. Epub 2014 Sep 2.PubMedCrossRefGoogle Scholar
  110. 110.
    Latus H, Gummel K, Diederichs T, et al. Aortopulmonary collateral flow is related to pulmonary artery size and affects ventricular dimensions in patients after the fontan procedure. PLoS One. 2013;8:e81684.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Rathod RH, Prakash A, Kim YY, et al. Cardiac magnetic resonance parameters predict transplantation-free survival in patients with Fontan circulation. Circ Cardiovasc Imaging. 2014;7:502–9.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Brown DW, Gauvreau K, Powell AJ, et al. Cardiac magnetic resonance versus routine cardiac catheterization before bidirectional Glenn anastomosis: long-term follow-up of a prospective randomized trial. J Thorac Cardiovasc Surg. 2013;146:1172–8.PubMedCrossRefGoogle Scholar
  113. 113.
    Prakash A, Khan MA, Hardy R, Torres AJ, Chen JM, Gersony WM. A new diagnostic algorithm for assessment of patients with single ventricle before a Fontan operation. J Thorac Cardiovasc Surg. 2009;138:917–23.PubMedCrossRefGoogle Scholar
  114. 114.
    Garg R, Powell AJ, Sena L, Marshall AC, Geva T. Effects of metallic implants on magnetic resonance imaging evaluation of Fontan palliation. Am J Cardiol. 2005;95:688–91.PubMedCrossRefGoogle Scholar
  115. 115.
    Restrepo M, Tang E, Haggerty CM, et al. Energetic implications of vessel growth and flow changes over time in Fontan patients. Ann Thorac Surg. 2015;99(1):163–70. Epub 2014 Nov 20.PubMedCrossRefGoogle Scholar
  116. 116.
    Dori Y, Glatz AC, Hanna BD, et al. Acute effects of embolizing systemic-to-pulmonary arterial collaterals on blood flow in patients with superior cavopulmonary connections: a pilot study. Circ Cardiovasc Interv. 2013;6:101–6.PubMedCrossRefGoogle Scholar
  117. 117.
    Grosse-Wortmann L, Hamilton R, Yoo SJ. Massive systemic-to-pulmonary collateral arteries in the setting of a cavopulmonary shunt and pulmonary venous stenosis. Cardiol Young. 2007;17:548–50.PubMedCrossRefGoogle Scholar
  118. 118.
    Rathod RH, Prakash A, Powell AJ, Geva T. Myocardial fibrosis identified by cardiac magnetic resonance delayed enhancement is associated with ventricular dysfunction and nonsustained ventricular tachycardia after Fontan operation. J Am Coll Cardiol. 2009;53:A356.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of CardiologyBoston Children’s HospitalBostonUSA
  2. 2.Department of PediatricsHarvard Medical SchoolBostonUSA

Personalised recommendations