Advertisement

Atherosclerotic Plaque Imaging

  • Begoña Lavin-PlazaEmail author
  • Alkystis Phinikaridou
  • Marcelo E. Andia
  • Sara Lacerda
  • Markus Henningsson
  • Marcus R. Makowski
  • René M. Botnar
Chapter
Part of the Contemporary Cardiology book series (CONCARD)

Abstract

Cardiovascular disease (CVD) remains the leading cause of death in the Western world despite improvements in prevention, diagnosis, and treatment. Atherosclerosis is a chronic inflammatory disease that remains clinically silent for many decades. Sudden rupture of “high-risk/vulnerable” plaques has been shown to be responsible for the majority of acute cardiovascular events, including myocardial infarction and stroke. Therefore, early detection of biological processes associated with atherosclerosis progression and plaque instability may improve diagnosis and treatment and help to better monitor the effectiveness of therapeutic interventions. Molecular magnetic resonance imaging (MRI) is a promising tool to detect molecular and cellular changes in the carotid, aortic, and coronary vessel wall including endothelial dysfunction, inflammation, vascular remodeling, enzymatic activity, intraplaque hemorrhage, elastin content, and fibrin deposition and thus may allow early detection of unstable lesions and improve the prediction of future coronary events. Evaluation of atherosclerosis at both the preclinical and clinical levels includes noncontrast-enhanced (NCE) and contrast-enhanced (CE) MRI with and without the use of MR contrast agents. To increase the biological information obtained by MRI, a variety of targeted-specific molecular probes have been developed for the noninvasive visualization of particular biological processes at the molecular and cellular level. This review will discuss the recent advances in molecular MRI of atherosclerosis, covering both pulse sequence development and also the design of novel contrast agents, for imaging atherosclerotic disease in vivo.

Keywords

Molecular MR imaging Atherosclerosis Coronary artery disease Contrast agent 

Notes

Acknowledgments

The authors acknowledge financial support from (1) the British Heart Foundation (RG/12/1/29262), (2) the Centre of Excellence in Medical Engineering funded by the Wellcome Trust and EPSRC (WT 088641/Z/09/Z), (3) the British Heart Foundation Centre of Excellence, and (4) the Department of Health via the National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre award to Guy’s and St Thomas’ NHS Foundation Trust in partnership with King’s College London and King’s College Hospital NHS Foundation Trust. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR, or the Department of Health.

References

  1. 1.
    Rodgers A, Ezzati M, Vander Hoorn S, Lopez AD, Lin R-B, Murray CJL, Group Comparative Risk Assessment C. Distribution of major health risks: findings from the global burden of disease study. PLoS Med 2004;1:e27.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Ridker PM, Paynter NP, Rifai N, Gaziano JM, Cook NR. C-reactive protein and parental history improve global cardiovascular risk prediction: the Reynolds risk score for men. Circulation. 2008;118:2243–51.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al. Executive summary: heart disease and stroke statistics – 2013 update: a report from the american heart association. Circulation. 2013;127:143–52.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Ambrose JA, Tannenbaum MA, Alexopoulos D, Hjemdahl-Monsen CE, Leavy J, Weiss M, et al. Angiographic progression of coronary artery disease and the development of myocardial infarction. J Am Coll Cardiol. 1988;12:56–62.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Varnava AM, Mills PG, Davies MJ. Relationship between coronary artery remodeling and plaque vulnerability. Circulation. 2002;105:939–43.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987;316:1371–5.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Ali ZA, Roleder T, Narula J, Mohanty BD, Baber U, Kovacic JC, et al. Increased thin-cap neoatheroma and periprocedural myocardial infarction in drug-eluting stent restenosis: multimodality intravascular imaging of drug-eluting and bare-metal stents. Circ Cardiovasc Interv. 2013;6:507–17.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Madder RD, Wohns DH, Muller JE. Detection by intracoronary near-infrared spectroscopy of lipid core plaque at culprit sites in survivors of cardiac arrest. J Invasive Cardiol. 2014;26:78–9.PubMedPubMedCentralGoogle Scholar
  9. 9.
    de Boer SP, Brugaletta S, Garcia-Garcia HM, Simsek C, Heo JH, Lenzen MJ, et al. Determinants of high cardiovascular risk in relation to plaque-composition of a non-culprit coronary segment visualized by near-infrared spectroscopy in patients undergoing percutaneous coronary intervention. Eur Heart J. 2014;35:282–9.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Wykrzykowska J, Lehman S, Williams G, Parker JA, Palmer MR, Varkey S, et al. Imaging of inflamed and vulnerable plaque in coronary arteries with 18f-fdg pet/ct in patients with suppression of myocardial uptake using a low-carbohydrate, high-fat preparation. J Nucl Med. 2009;50:563–8.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Joshi NV, Vesey AT, Williams MC, Shah AS, Calvert PA, Craighead FH, et al. 18f-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet. 2014;383:705–13.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473:317–25.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Miao C, Chen S, Macedo R, Lai S, Liu K, Li D, Wasserman BA, et al. Positive remodeling of the coronary arteries detected by magnetic resonance imaging in an asymptomatic population: mesa (multi-ethnic study of atherosclerosis). J Am Coll Cardiol. 2009;53:1708–15.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Gerretsen SC, Kooi ME, Kessels AG, Schalla S, Katoh M, van der Geest RJ, et al. Visualization of coronary wall atherosclerosis in asymptomatic subjects and patients with coronary artery disease using magnetic resonance imaging. PLoS One. 2010;5:e12998.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Botnar RM, Bucker A, Kim WY, Viohl I, Gunther RW, Spuentrup E. Initial experiences with in vivo intravascular coronary vessel wall imaging. J Magn Reson Imaging. 2003;17:615–9.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Schar M, Kim WY, Stuber M, Boesiger P, Manning WJ, Botnar RM. The impact of spatial resolution and respiratory motion on MR imaging of atherosclerotic plaque. J Magn Reson Imaging. 2003;17:538–44.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Kim WY, Astrup AS, Stuber M, Tarnow L, Falk E, Botnar RM, et al. Subclinical coronary and aortic atherosclerosis detected by magnetic resonance imaging in type 1 diabetes with and without diabetic nephropathy. Circulation. 2007;115:228–35.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Maintz D, Ozgun M, Hoffmeier A, Fischbach R, Kim WY, Stuber M, et al. Selective coronary artery plaque visualization and differentiation by contrast-enhanced inversion prepared MRI. Eur Heart J. 2006;27:1732–6.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Noguchi T, Kawasaki T, Tanaka A, Yasuda S, Goto Y, Ishihara M, et al. High-intensity signals in coronary plaques on noncontrast t1-weighted magnetic resonance imaging as a novel determinant of coronary events. J Am Coll Cardiol. 2014;63(10):989–99.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Noguchi T, Yamada N, Higashi M, Goto Y, Naito H. High-intensity signals in carotid plaques on t1-weighted magnetic resonance imaging predict coronary events in patients with coronary artery disease. J Am Coll Cardiol. 2011;58:416–22.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Tanaka A, Kawasaki T, Noguchi T, Koga S, Hiramatsu Y, Fukuyama T, Koga N. Hyperintense plaque with noncontrast t1-weighted magnetic resonance coronary plaque imaging leading to acute coronary syndrome. Circulation. 2009;120:2400–1.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Jansen CH, Perera D, Makowski MR, Wiethoff AJ, Phinikaridou A, Razavi RM, et al. Detection of intracoronary thrombus by magnetic resonance imaging in patients with acute myocardial infarction. Circulation. 2011;124:416–24.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Ehara S, Hasegawa T, Nakata S, Matsumoto K, Nishimura S, Iguchi T, et al. Hyperintense plaque identified by magnetic resonance imaging relates to intracoronary thrombus as detected by optical coherence tomography in patients with angina pectoris. Eur Heart J Cardiovasc Imaging. 2012;13:394–9.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Hays AG, Hirsch GA, Kelle S, Gerstenblith G, Weiss RG, Stuber M. Noninvasive visualization of coronary artery endothelial function in healthy subjects and in patients with coronary artery disease. J Am Coll Cardiol. 2010;56:1657–65.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Hays AG, Kelle S, Hirsch GA, Soleimanifard S, Yu J, Agarwal HK, et al. Regional coronary endothelial function is closely related to local early coronary atherosclerosis in patients with mild coronary artery disease: pilot study. Circ Cardiovasc Imaging. 2012;5:341–8.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Hays AG, Stuber M, Hirsch GA, Yu J, Schar M, Weiss RG, Gerstenblith G, Kelle S. Non-invasive detection of coronary endothelial response to sequential handgrip exercise in coronary artery disease patients and healthy adults. PLoS One. 2013;8:e58047.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Kawasaki T, Koga S, Koga N, Noguchi T, Tanaka H, Koga H, et al. Characterization of hyperintense plaque with noncontrast t1-weighted cardiac magnetic resonance coronary plaque imagingcomparison with multislice computed tomography and intravascular ultrasound. JACC Cardiovasc Imaging. 2009;2:720–8.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Yeon SB, Sabir A, Clouse M, Martinezclark PO, Peters DC, Hauser TH, et al. Delayed-enhancement cardiovascular magnetic resonance coronary artery wall imaging: comparison with multislice computed tomography and quantitative coronary angiography. J Am Coll Cardiol. 2007;50:441–7.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Ibrahim T, Makowski MR, Jankauskas A, Maintz D, Karch M, Schachoff S, et al. Serial contrast-enhanced cardiac magnetic resonance imaging demonstrates regression of hyperenhancement within the coronary artery wall in patients after acute myocardial infarction. JACC Cardiovasc Imaging. 2009;2:580–8.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Botnar RM, Buecker A, Wiethoff AJ, Parsons EC Jr, Katoh M, Katsimaglis G, Weisskoff RM, et al. In vivo magnetic resonance imaging of coronary thrombosis using a fibrin-binding molecular magnetic resonance contrast agent. Circulation. 2004;110:1463–6.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Botnar RM, Perez AS, Witte S, Wiethoff AJ, Laredo J, Hamilton J, et al. In vivo molecular imaging of acute and subacute thrombosis using a fibrin-binding magnetic resonance imaging contrast agent. Circulation. 2004;109:2023–9.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    von Bary C, Makowski M, Preissel A, Keithahn A, Warley A, Spuentrup E, et al. MRI of coronary wall remodeling in a swine model of coronary injury using an elastin-binding contrast agent. Circ Cardiovasc Imaging. 2011;4(2):147–55.CrossRefGoogle Scholar
  33. 33.
    Vymazal J, Spuentrup E, Cardenas-Molina G, Wiethoff AJ, Hartmann MG, Caravan P, Parsons EC Jr. Thrombus imaging with fibrin-specific gadolinium-based MR contrast agent ep-2104r: results of a phase ii clinical study of feasibility. Investig Radiol. 2009;44:697–704.CrossRefGoogle Scholar
  34. 34.
    Spuentrup E, Botnar RM, Wiethoff A, Ibrahim T, Sebastin K, Katho M, et al. MR imaging of thrombi using ep-2104r, a fibrin specific contrast agent: initial results in patients. Eur Radiol. 2008;18(9):1995–2005. (1911)PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Sato Y, Hatakeyama K, Marutsuka K, Asada Y. Incidence of asymptomatic coronary thrombosis and plaque disruption: comparison of non-cardiac and cardiac deaths among autopsy cases. Thromb Res. 2009;124:19–23.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Lavin B, Phinikaridou A, Henningsson M, Botnar RM. Current development of molecular coronary plaque imaging using magnetic resonance imaging towards clinical application. Curr Cardiovasc Imaging Rep. 2014;7(12):9309.CrossRefGoogle Scholar
  37. 37.
    Choudhury RP, Fuster V, Fayad ZA. Molecular, cellular and functional imaging of atherothrombosis. Nat Rev Drug Discov. 2004;3:913–25.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Wilcox JN, Scott NA. Potential role of the adventitia in arteritis and atherosclerosis. Int J Cardiol. 1996;54(Suppl):S21–35.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Shi Y, O’Brien JE, Fard A, Mannion JD, Wang D, Zalewski A. Adventitial myofibroblasts contribute to neointimal formation in injured porcine coronary arteries. Circulation. 1996;94:1655–64.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Zhao L, Funk CD. Lipoxygenase pathways in atherogenesis. Trends Cardiovasc Med. 2004;14:191–5.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Chiu JJ, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev. 2011;91:327–87.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver RP, et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood. 1998;91:3527–61.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Brodsky SV, Goligorsky MS. Endothelium under stress: local and systemic messages. Semin Nephrol. 2012;32:192–8.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Galkina E, Ley K. Vascular adhesion molecules in atherosclerosis. Arterioscler Thromb Vasc Biol. 2007;27:2292–301.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Weber C, Noels H. Atherosclerosis: current pathogenesis and therapeutic options. Nat Med. 2011;17:1410–22.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Silvestre-Roig C, de Winther MP, Weber C, Daemen MJ, Lutgens E, Soehnlein O. Atherosclerotic plaque destabilization: mechanisms, models, and therapeutic strategies. Circ Res. 2014;114:214–26.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Falk E. Pathogenesis of atherosclerosis. J Am Coll Cardiol. 2006;47(8):C7–12.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Narula J, Strauss HW. The popcorn plaques. Nat Med. 2007;13(5):532–4.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, Mintz GS, et al. Prospect Investigators. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011;364:226–35.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Narula J, Garg P, Achenbach S, Motoyama S, Virmani R, Strauss HW. Arithmetic of vulnerable plaques for noninvasive imaging. Nat Clin Pract Cardiovasc Med. 2008;5(Suppl 2):S2–10.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Dabir D, Child N, Kalra A, Rogers T, Gebker R, Jabbour A, et al. Reference values for healthy human myocardium using a t1 mapping methodology: results from the international t1 multicenter cardiovascular magnetic resonance study. J Cardiovasc Magn Reson. 2014;16:69.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Kawel N, Nacif M, Zavodni A, Jones J, Liu S, Sibley CT, Bluemke DA. T1 mapping of the myocardium: intra-individual assessment of the effect of field strength, cardiac cycle and variation by myocardial region. J Cardiovasc Magn Reson. 2012;14:27.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Robson MD, Piechnik SK, Tunnicliffe EM, Neubauer S. T measurements in the human myocardium: the effects of magnetization transfer on the sasha and molli sequences. Magn Reson Med. 2013;70(3):664–70.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Salerno M, Janardhanan R, Jiji RS, Brooks J, Adenaw N, Mehta B, et al. Comparison of methods for determining the partition coefficient of gadolinium in the myocardium using t1 mapping. J Magn Reson Imaging. 2013;38:217–24.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Ichikawa Y, Sakuma H, Suzawa N, Kitagawa K, Makino K, Hirano T, Takeda K. Late gadolinium-enhanced magnetic resonance imaging in acute and chronic myocardial infarction. Improved prediction of regional myocardial contraction in the chronic state by measuring thickness of nonenhanced myocardium. J Am Coll Cardiol. 2005;45:901–9.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Nitz WR, Reimer P. Contrast mechanisms in MR imaging. Eur Radiol. 1999;9:1032–46.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Keegan J, Gatehouse PD, Yang GZ, Firmin DN. Non-model-based correction of respiratory motion using beat-to-beat 3d spiral fat-selective imaging. J Magn Reson Imaging. 2007;26:624–9.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Dixon WT. Simple proton spectroscopic imaging. Radiology. 1984;153:189–94.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Glover GH, Schneider E. Three-point Dixon technique for true water/fat decomposition with b0 inhomogeneity correction. Magn Reson Med. 1991;18:371–83.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Fayad ZA, Fuster V, Fallon JT, Jayasundera T, Worthley SG, Helft G, et al. Noninvasive in vivo human coronary artery lumen and wall imaging using black-blood magnetic resonance imaging. Circulation. 2000;102:506–10.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Botnar RM, Stuber M, Kissinger KV, Kim WY, Spuentrup E, Manning WJ. Noninvasive coronary vessel wall and plaque imaging with magnetic resonance imaging. Circulation. 2000;102:2582–7.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Botnar RM, Kim WY, Bornert P, Stuber M, Spuentrup E, Manning WJ. 3d coronary vessel wall imaging utilizing a local inversion technique with spiral image acquisition. Magn Reson Med. 2001;46:848–54.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Wang J, Yarnykh VL, Hatsukami T, Chu B, Balu N, Yuan C. Improved suppression of plaque-mimicking artifacts in black-blood carotid atherosclerosis imaging using a multislice motion-sensitized driven-equilibrium (msde) turbo spin-echo (tse) sequence. Magn Reson Med. 2007;58:973–81.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Li L, Miller KL, Jezzard P. Dante-prepared pulse trains: a novel approach to motion-sensitized and motion-suppressed quantitative magnetic resonance imaging. Magn Reson Med. 2012;68:1423–38.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Fan Z, Zhang Z, Chung YC, Weale P, Zuehlsdorff S, Carr J, Li D. Carotid arterial wall MRI at 3t using 3d variable-flip-angle turbo spin-echo (tse) with flow-sensitive dephasing (fsd). J Magn Reson Imaging. 2010;31:645–54.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Oei ML, Ozgun M, Seifarth H, Bunck A, Fischbach R, Orwat S, et al. T1-weighted MRI for the detection of coronary artery plaque haemorrhage. Eur Radiol. 2010;20:2817–23.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Andia ME, Henningsson M, Hussain T, Phinikaridou A, Protti A, Greil G, Botnar RM. Flow-independent 3d whole-heart vessel wall imaging using an interleaved t2-preparation acquisition. Magn Reson Med. 2013;69(1):150–7.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Xie J, Bi X, Fan Z, Bhat H, Shah S, Zuehlsdorff S, Li D. 3d flow-independent peripheral vessel wall imaging using t(2)-prepared phase-sensitive inversion-recovery steady-state free precession. J Magn Reson Imaging. 2010;32:399–408.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP. Modified look-locker inversion recovery (molli) for high-resolution t1 mapping of the heart. Magn Reson Med. 2004;52:141–6.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Chow K, Flewitt JA, Green JD, Pagano JJ, Friedrich MG, Thompson RB. Saturation recovery single-shot acquisition (sasha) for myocardial t(1) mapping. Magn Reson Med. 2014;71:2082–95.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Roujol S, Weingartner S, Foppa M, Chow K, Kawaji K, Ngo LH, et al. Accuracy, precision, and reproducibility of four t1 mapping sequences: a head-to-head comparison of molli, shmolli, sasha, and sapphire. Radiology. 2014;272:683–9.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    van Heeswijk RB, Piccini D, Feliciano H, Hullin R, Schwitter J, Stuber M. Self-navigated isotropic three-dimensional cardiac t mapping. Magn Reson Med. 2015;73(4):1549–54.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    van Heeswijk RB, Feliciano H, Bongard C, Bonanno G, Coppo S, Lauriers N, et al. Free-breathing 3 t magnetic resonance t2-mapping of the heart. JACC Cardiovasc Imaging. 2012;5:1231–9.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Ding H, Fernandez-de-Manuel L, Schar M, Schuleri KH, Halperin H, He L, et al. Three-dimensional whole-heart t mapping at 3t. Magn Reson Med. 2015;74(3):803–16.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Henningsson M, Koken P, Stehning C, Razavi R, Prieto C, Botnar RM. Whole-heart coronary MR angiography with 2d self-navigated image reconstruction. Magn Reson Med. 2012;67:437–45.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Stehning C, Bornert P, Nehrke K, Eggers H, Stuber M. Free-breathing whole-heart coronary MRA with 3d radial ssfp and self-navigated image reconstruction. Magn Reson Med. 2005;54:476–80.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Prieto C, Doneva M, Usman M, Henningsson M, Greil G, Schaeffter T, Botnar RM. Highly efficient respiratory motion compensated free-breathing coronary MRA using golden-step cartesian acquisition. J Magn Reson Imaging. 2015;41:738–46.CrossRefGoogle Scholar
  78. 78.
    Pang J, Bhat H, Sharif B, Fan Z, Thomson LE, LaBounty T, et al. Whole-heart coronary MRA with 100% respiratory gating efficiency: self-navigated three-dimensional retrospective image-based motion correction (trim). Magn Reson Med. 2014;71:67–74.CrossRefGoogle Scholar
  79. 79.
    Henningsson M, Prieto C, Chiribiri A, Vaillant G, Razavi R, Botnar RM. Whole-heart coronary MRA with 3d affine motion correction using 3d image-based navigation. Magn Reson Med. 2014;71:173–81.CrossRefGoogle Scholar
  80. 80.
    Aitken AP, Henningsson M, Botnar RM, Schaeffter T, Prieto C. 100% efficient three-dimensional coronary MR angiography with two-dimensional beat-to-beat translational and bin-to-bin affine motion correction. Magn Reson Med. 2015;74:756–64.CrossRefGoogle Scholar
  81. 81.
    Pang J, Sharif B, Fan Z, Bi X, Arsanjani R, Berman DS, Li D. Ecg and navigator-free four-dimensional whole-heart coronary MRA for simultaneous visualization of cardiac anatomy and function. Magn Reson Med. 2014;72:1208–17.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Coppo S, Piccini D, Bonanno G, Chaptinel J, Vincenti G, Feliciano H, et al. Free-running 4d whole-heart self-navigated golden angle MRI: initial results. Magn Reson Med. 2015;74(5):1306–16.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Caravan P. Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem Soc Rev. 2006;35:512.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Calcagno C, Ramachandran S, Izquierdo-Garcia D, Mani V, Millon A, Rosenbaum D, Tawakol A, et al. The complementary roles of dynamic contrast-enhanced MRI and 18f-fluorodeoxyglucose pet/ct for imaging of carotid atherosclerosis. Eur J Nucl Med Mol Imaging. 2013;40:1884–93.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Caravan P, Ellison JJ, McMurry TJ, Lauffer RB. Gadolinium(iii) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev. 1999;99:2293–352.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Caravan P, Cloutier NJ, Greenfield MT, McDermid SA, Dunham SU, Bulte JW, et al. The interaction of ms-325 with human serum albumin and its effect on proton relaxation rates. J Am Chem Soc. 2002;124:3152–62.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Nivorozhkin AL, Kolodziej AF, Caravan P, Greenfield MT, Lauffer RB, McMurry TJ. Enzyme-activated gd(3+) magnetic resonance imaging contrast agents with a prominent receptor-induced magnetization enhancement. Angew Chem Int Ed Engl. 2001;40:2903–6.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Makowski MR, Wiethoff AJ, Blume U, Cuello F, Warley A, Jansen CH, et al. Assessment of atherosclerotic plaque burden with an elastin-specific magnetic resonance contrast agent. Nat Med. 2011;17:383–8.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Andia ME, Saha P, Jenkins J, Modarai B, Wiethoff AJ, Phinikaridou A, Grover SP, et al. Fibrin-targeted magnetic resonance imaging allows in vivo quantification of thrombus fibrin content and identifies thrombi amenable for thrombolysis. Arterioscler Thromb Vasc Biol. 2014;34:1193–8.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Flacke S, Fischer S, Scott MJ, Fuhrhop RJ, Allen JS, McLean M, et al. Novel MRI contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques. Circulation. 2001;104:1280–5.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Winter PM, Morawski AM, Caruthers SD, Fuhrhop RW, Zhang H, Williams TA, et al. Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. Circulation. 2003;108:2270–4.PubMedCrossRefGoogle Scholar
  92. 92.
    Weinmann HJ, Brasch RC, Press WR, Wesbey GE. Characteristics of gadolinium-dtpa complex: a potential nmr contrast agent. AJR Am J Roentgenol. 1984;142:619–24.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Laniado M, Weinmann HJ, Schorner W, Felix R, Speck U. First use of gddtpa/dimeglumine in man. Physiol Chem Phys Med NMR. 1984;16:157–65.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Weissleder R, Elizondo G, Wittenberg J, Rabito CA, Bengele HH, Josephson L. Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology. 1990;175:489–93.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Farrar CT, Dai G, Novikov M, Rosenzweig A, Weissleder R, Rosen BR, Sosnovik DE. Impact of field strength and iron oxide nanoparticle concentration on the linearity and diagnostic accuracy of off-resonance imaging. NMR Biomed. 2008;21:453–63.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Wang YX, Xuan S, Port M, Idee JM. Recent advances in superparamagnetic iron oxide nanoparticles for cellular imaging and targeted therapy research. Curr Pharm Des. 2013;19:6575–93.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Tang TY, Muller KH, Graves MJ, Li ZY, Walsh SR, Young V, et al. Iron oxide particles for atheroma imaging. Arterioscler Thromb Vasc Biol. 2009;29:1001–8.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Segers FM, den Adel B, Bot I, van der Graaf LM, van der Veer EP, Gonzalez W, et al. Scavenger receptor-ai-targeted iron oxide nanoparticles for in vivo MRI detection of atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2013;33:1812–9.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Yilmaz A, Rosch S, Klingel K, Kandolf R, Helluy X, Hiller KH, et al. Magnetic resonance imaging (MRI) of inflamed myocardium using iron oxide nanoparticles in patients with acute myocardial infarction – preliminary results. Int J Cardiol. 2013;163:175–82.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Islam T, Harisinghani MG. Overview of nanoparticle use in cancer imaging. Cancer Biomark. 2009;5:61–7.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Briley-Saebo KC, Shaw PX, Mulder WJ, Choi SH, Vucic E, Aguinaldo JG, et al. Targeted molecular probes for imaging atherosclerotic lesions with magnetic resonance using antibodies that recognize oxidation-specific epitopes. Circulation. 2008;117:3206–15.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Amirbekian V, Lipinski MJ, Briley-Saebo KC, Amirbekian S, Aguinaldo JG, Weinreb DB, et al. Detecting and assessing macrophages in vivo to evaluate atherosclerosis noninvasively using molecular MRI. Proc Natl Acad Sci U S A. 2007;104:961–6.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Ruehm SG, Corot C, Vogt P, Kolb S, Debatin JF. Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation. 2001;103:415–22.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Kooi ME, Cappendijk VC, Cleutjens KBJM, Kessels AGH, Kitslaar PJEHM, Borgers M, et al. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation. 2003;107:2453–8.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Tang TY, Howarth SP, Miller SR, Graves MJ, U-King-Im JM, Li ZY, et al. Correlation of carotid atheromatous plaque inflammation using uspio-enhanced MR imaging with degree of luminal stenosis. Stroke. 2008;39:2144–7.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Tang TY, Howarth SP, Miller SR, Graves MJ, U-King-Im JM, Li ZY, et al. Comparison of the inflammatory burden of truly asymptomatic carotid atheroma with atherosclerotic plaques in patients with asymptomatic carotid stenosis undergoing coronary artery bypass grafting: an ultrasmall superparamagnetic iron oxide enhanced magnetic resonance study. Eur J Vasc Endovasc Surg. 2008;35:392–8.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Phinikaridou A, Andia ME, Protti A, Indermuehle A, Shah A, Smith A, Warley A, Botnar RM. Noninvasive magnetic resonance imaging evaluation of endothelial permeability in murine atherosclerosis using an albumin-binding contrast agent. Circulation. 2012;126(6):707–19.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Phinikaridou A, Andia ME, Passacquale G, Ferro A, Botnar RM. Noninvasive MRI monitoring of the effect of interventions on endothelial permeability in murine atherosclerosis using an albumin-binding contrast agent. J Am Heart Assoc. 2013;2:e000402.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Lobbes MB, Heeneman S, Passos VL, Welten R, Kwee RM, van der Geest RJ, et al. Gadofosveset-enhanced magnetic resonance imaging of human carotid atherosclerotic plaques: a proof-of-concept study. Investig Radiol. 2010;45(5):275–81.CrossRefGoogle Scholar
  110. 110.
    Lobbes MB, Miserus RJ, Heeneman S, Passos VL, Mutsaers PH, Debernardi N, et al. Atherosclerosis: contrast-enhanced MR imaging of vessel wall in rabbit model – comparison of gadofosveset and gadopentetate dimeglumine. Radiology. 2009;250:682–91.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Pedersen SF, Thrysoe SA, Paaske WP, Thim T, Falk E, Ringgaard S, Kim WY. CMR assessment of endothelial damage and angiogenesis in porcine coronary arteries using gadofosveset. J Cardiovasc Magn Reson. 2011;13:10.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    McAteer MA, Schneider JE, Ali ZA, Warrick N, Bursill CA, von zur Muhlen C, et al. Magnetic resonance imaging of endothelial adhesion molecules in mouse atherosclerosis using dual-targeted microparticles of iron oxide. Arterioscler Thromb Vasc Biol. 2008;28:77–83.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Nahrendorf M, Jaffer FA, Kelly KA, Sosnovik DE, Aikawa E, Libby P, Weissleder R. Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis. Circulation. 2006;114:1504–11.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Sluimer JC, Kolodgie FD, Bijnens AP, Maxfield K, Pacheco E, Kutys B, et al. Thin-walled microvessels in human coronary atherosclerotic plaques show incomplete endothelial junctions relevance of compromised structural integrity for intraplaque microvascular leakage. J Am Coll Cardiol. 2009;53:1517–27.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Kolodgie FD, Narula J, Yuan C, Burke AP, Finn AV, Virmani R. Elimination of neoangiogenesis for plaque stabilization: is there a role for local drug therapy? J Am Coll Cardiol. 2007;49:2093–101.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Russell DA, Abbott CR, Gough MJ. Vascular endothelial growth factor is associated with histological instability of carotid plaques. Br J Surg. 2008;95:576–81.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Virmani R, Kolodgie FD, Burke AP, Finn AV, Gold HK, Tulenko TN, Wrenn SP, Narula J. Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol. 2005;25:2054–61.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Manduteanu I, Simionescu M. Inflammation in atherosclerosis: a cause or a result of vascular disorders? J Cell Mol Med. 2012;16:1978–90.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Purushothaman KR, Sanz J, Zias E, Fuster V, Moreno PR. Atherosclerosis neovascularization and imaging. Curr Mol Med. 2006;6:549–56.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Kerwin WS, O’Brien KD, Ferguson MS, Polissar N, Hatsukami TS, Yuan C. Inflammation in carotid atherosclerotic plaque: a dynamic contrast-enhanced MR imaging study. Radiology. 2006;241:459–68.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Jaffer FA, Nahrendorf M, Sosnovik D, Kelly KA, Aikawa E, Weissleder R. Cellular imaging of inflammation in atherosclerosis using magnetofluorescent nanomaterials. Mol Imaging. 2006;5:85–92.PubMedCrossRefGoogle Scholar
  122. 122.
    Tait JF. Imaging of apoptosis. J Nucl Med. 2008;49:1573–6.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    van Tilborg GA, Vucic E, Strijkers GJ, Cormode DP, Mani V, Skajaa T, et al. Annexin a5-functionalized bimodal nanoparticles for MRI and fluorescence imaging of atherosclerotic plaques. Bioconjug Chem. 2010;21:1794–803.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Ye D, Shuhendler AJ, Cui L, Tong L, Tee SS, Tikhomirov G, et al. Bioorthogonal cyclization-mediated in situ self-assembly of small-molecule probes for imaging caspase activity in vivo. Nat Chem. 2014;6:519–26.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Pello OM, Silvestre C, De Pizzol M, Andres V. A glimpse on the phenomenon of macrophage polarization during atherosclerosis. Immunobiology. 2011;216:1172–6.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Durand E, Raynaud JS, Bruneval P, Brigger I, Al Haj Zen A, et al. Magnetic resonance imaging of ruptured plaques in the rabbit with ultrasmall superparamagnetic particles of iron oxide. J Vasc Res. 2007;44:119–28.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Morishige K, Kacher DF, Libby P, Josephson L, Ganz P, Weissleder R, Aikawa M. High-resolution magnetic resonance imaging enhanced with superparamagnetic nanoparticles measures macrophage burden in atherosclerosis. Circulation. 2010;122:1707–15.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Schmitz SA, Coupland SE, Gust R, Winterhalter S, Wagner S, Kresse M, et al. Superparamagnetic iron oxide-enhanced MRI of atherosclerotic plaques in watanabe hereditable hyperlipidemic rabbits. Investig Radiol. 2000;35:460–71.CrossRefGoogle Scholar
  129. 129.
    Sigovan M, Boussel L, Sulaiman A, Sappey-Marinier D, Alsaid H, Desbleds-Mansard C, et al. Rapid-clearance iron nanoparticles for inflammation imaging of atherosclerotic plaque: initial experience in animal model. Radiology. 2009;252:401–9.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Smith BR, Heverhagen J, Knopp M, Schmalbrock P, Shapiro J, Shiomi M, et al. Localization to atherosclerotic plaque and biodistribution of biochemically derivatized superparamagnetic iron oxide nanoparticles (spions) contrast particles for magnetic resonance imaging (MRI). Biomed Microdevices. 2007;9:719–27.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Makowski MR, Varma G, Wiethoff AJ, Smith A, Mattock K, Jansen CH, et al. Noninvasive assessment of atherosclerotic plaque progression in apoe-/- mice using susceptibility gradient mapping. Circ Cardiovasc Imaging. 2011;4(3):295–303.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Tang TY, Patterson AJ, Miller SR, Graves MJ, Howarth SPS, U-King-Im JM, et al. Temporal dependence of in vivo uspio-enhanced MRI signal changes in human carotid atheromatous plaques. Neuroradiology. 2009;51:457–65.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Tang TY, Howarth SP, Miller SR, Graves MJ, U-King-Im JM, Trivedi RA, et al. Comparison of the inflammatory burden of truly asymptomatic carotid atheroma with atherosclerotic plaques contralateral to symptomatic carotid stenosis: an ultra small superparamagnetic iron oxide enhanced magnetic resonance study. J Neurol Neurosurg Psychiatry. 2007;78:1337–43.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Tang TY, Howarth SP, Li ZY, Miller SR, Graves MJ, U-King-Im JM, et al. Correlation of carotid atheromatous plaque inflammation with biomechanical stress: utility of uspio enhanced MR imaging and finite element analysis. Atherosclerosis. 2008;196:879–87.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Trivedi RA, Mallawarachi C, U-King-Im J-M, Graves MJ, Horsley J, Goddard MJ, et al. Identifying inflamed carotid plaques using in vivo uspio-enhanced MR imaging to label plaque macrophages. Arterioscler Thromb Vasc Biol. 2006;26:1601–6.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Flogel U, Ding Z, Hardung H, Jander S, Reichmann G, Jacoby C, Schubert R, Schrader J. In vivo monitoring of inflammation after cardiac and cerebral ischemia by fluorine magnetic resonance imaging. Circulation. 2008;118:140–8.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Burnett JR. Lipids, lipoproteins, atherosclerosis and cardiovascular disease. Clin Biochem Rev. 2004;25:2.PubMedPubMedCentralGoogle Scholar
  138. 138.
    Sirol M, Itskovich VV, Mani V, Aguinaldo JG, Fallon JT, Misselwitz B, et al. Lipid-rich atherosclerotic plaques detected by gadofluorine-enhanced in vivo magnetic resonance imaging. Circulation. 2004;109:2890–6.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Chen W, Vucic E, Leupold E, Mulder WJ, Cormode DP, Briley-Saebo KC, et al. Incorporation of an apoe-derived lipopeptide in high-density lipoprotein MRI contrast agents for enhanced imaging of macrophages in atherosclerosis. Contrast Media Mol Imaging. 2008;3:233–42.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Katsuda S, Kaji T. Atherosclerosis and extracellular matrix. J Atheroscler Thromb. 2003;10:267–74.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Makowski MR, Preissel A, von Bary C, Warley A, Schachoff S, Keithan A, et al. Three-dimensional imaging of the aortic vessel wall using an elastin-specific magnetic resonance contrast agent. Investig Radiol. 2012;47:438–44.CrossRefGoogle Scholar
  142. 142.
    Phinikaridou A, Andia ME, Indermuehle A, Onthank DC, Cesati RR, Smith A, et al. Vascular remodeling and plaque vulnerability in a rabbit model of atherosclerosis: comparison of delayed-enhancement MR imaging with an elastin-specific contrast agent and unenhanced black-blood MR imaging. Radiology. 2014;271:390–9.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Motoyama S, Kondo T, Sarai M, Sugiura A, Harigaya H, Sato T, et al. Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol. 2007;50:319–26.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Motoyama S, Sarai M, Harigaya H, Anno H, Inoue K, Hara T, et al. Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol. 2009;54:49–57.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Gough PJ, Gomez IG, Wille PT, Raines EW. Macrophage expression of active mmp-9 induces acute plaque disruption in apoe-deficient mice. J Clin Invest. 2006;116:59–69.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Lancelot E, Amirbekian V, Brigger I, Raynaud JS, Ballet S, David C, et al. Evaluation of matrix metalloproteinases in atherosclerosis using a novel noninvasive imaging approach. Arterioscler Thromb Vasc Biol. 2008;28:425–32.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Hyafil F, Vucic E, Cornily JC, Sharma R, Amirbekian V, Blackwell F, et al. Monitoring of arterial wall remodelling in atherosclerotic rabbits with a magnetic resonance imaging contrast agent binding to matrix metalloproteinases. Eur Heart J. 2011;32:1561–71.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Nicholls SJ, Hazen SL. Myeloperoxidase and cardiovascular disease. Arterioscler Thromb Vasc Biol. 2005;25:1102–11.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Ronald JA, Chen JW, Chen Y, Hamilton AM, Rodriguez E, Reynolds F, et al. Enzyme-sensitive magnetic resonance imaging targeting myeloperoxidase identifies active inflammation in experimental rabbit atherosclerotic plaques. Circulation. 2009;120:592–9.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Tavora F, Cresswell N, Li L, Ripple M, Burke A. Immunolocalisation of fibrin in coronary atherosclerosis: implications for necrotic core development. Pathology. 2010;42:15–22.PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation. 1995;92:657–71.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Begoña Lavin-Plaza
    • 1
    Email author
  • Alkystis Phinikaridou
    • 1
  • Marcelo E. Andia
    • 2
  • Sara Lacerda
    • 1
  • Markus Henningsson
    • 1
  • Marcus R. Makowski
    • 3
  • René M. Botnar
    • 1
    • 4
  1. 1.Division of Imaging Sciences and Biomedical EngineeringKing’s College London, St Thomas’ HospitalLondonUK
  2. 2.Radiology Department, School of MedicinePontificia Universidad Catolica de ChileSantiagoChile
  3. 3.Department of Radiology, Institut für RadiologieBerlinGermany
  4. 4.The British Heart Foundation Centre of Excellence, Cardiovascular DivisionKing’s College LondonLondonUK

Personalised recommendations