Drug Dosing in Acute Kidney Injury

  • Jeremy R. DeGrado
  • James F. Gilmore
  • Benjamin Hohlfelder
  • Craig A. Stevens
  • Steven GabardiEmail author


It is clear that alterations in renal function will alter medication excretion. However, the type of renal dysfunction may affect other parameters of drug handling. Chronic kidney disease (CKD) influences drug disposition through changes in several pharmacokinetic characteristics. Common pharmacokinetic abnormalities seen in patients with CKD include reduced oral absorption and glomerular filtration, altered tubular secretion and reabsorption, and changes in intestinal and hepatic clearance. Conversely, patients with acute kidney injury (AKI) without preexisting renal dysfunction may handle drugs differently than those patients with CKD or end-stage renal disease. Thus, dosing stratagems extrapolated from patients with CKD may result in subtherapeutic drug concentrations and ineffective treatment. Achieving a balance between under- and overdosing requires rigorous monitoring and individualized dosing. Several published reviews have discussed in great detail drug dosing strategies in CKD and/or patients with AKI receiving renal replacement therapies. This review will focus on key concepts surrounding the dosing of medications in patients with AKI not receiving renal replacement therapies.


Drug dosing Pharmacokinetics Absorption Distribution Metabolism Excretion Pharmacodynamics 


  1. 1.
    Xue JL, Daniels F, Star RA, et al. Incidence and mortality of acute renal failure in Medicare beneficiaries, 1992 to 2001. J Am Soc Nephrol. 2006;17:1135–42.CrossRefGoogle Scholar
  2. 2.
    Bagshaw SM, George C, Bellomo R. Changes in the incidence and outcome for early acute kidney injury in a cohort of Australian intensive care units. Crit Care. 2007;11:R68.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Uchino S, Kellum JA, Bellomo R, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294:813–8.CrossRefGoogle Scholar
  4. 4.
    Ali T, Khan I, Simpson W, et al. Incidence and outcomes in acute kidney injury: a comprehensive population-based study. J Am Soc Nephrol. 2007;18:1292–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Yong K, Dogra G, Boudville N, Pinder M, Lim W. Acute kidney injury: controversies revisited. Int J Nephrol. 2011;2011:762634.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Udy AA, Roberts JA, Lipman J. Implications of augmented renal clearance in critically ill patients. Nat Rev Nephrol. 2011;7:539–43.CrossRefPubMedGoogle Scholar
  7. 7.
    Robert S, Zarowitz BJ, Peterson EL, Dumler F. Predictability of creatinine clearance estimates in critically ill patients. Crit Care Med. 1993;21:1487–95.CrossRefPubMedGoogle Scholar
  8. 8.
    Bragadottir G, Redfors B, Ricksten SE. Assessing glomerular filtration rate (GFR) in critically ill patients with acute kidney injury—true GFR versus urinary creatinine clearance and estimating equations. Crit Care. 2013;17:R108.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Moran SM, Myers BD. Course of acute renal failure studied by a model of creatinine kinetics. Kidney Int. 1985;27:928–37.CrossRefPubMedGoogle Scholar
  10. 10.
    Brivet FG, Kleinknecht DJ, Loirat P, Landais PJ. Acute renal failure in intensive care units—causes, outcome, and prognostic factors of hospital mortality; a prospective, multicenter study. French Study Group on Acute Renal Failure. Crit Care Med. 1996;24:192–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Mehta RL, Pascual MT, Soroko S, et al. Spectrum of acute renal failure in the intensive care unit: the PICARD experience. Kidney Int. 2004;66:1613–21.CrossRefGoogle Scholar
  12. 12.
    Mehta RL, Pascual MT, Gruta CG, Zhuang S, Chertow GM. Refining predictive models in critically ill patients with acute renal failure. J Am Soc Nephrol. 2002;13:1350–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Mehta RL, McDonald B, Gabbai FB, et al. A randomized clinical trial of continuous versus intermittent dialysis for acute renal failure. Kidney Int. 2001;60:1154–63.CrossRefPubMedGoogle Scholar
  14. 14.
    Eyler RF, Mueller BA. Antibiotic dosing in critically ill patients with acute kidney injury. Nat Rev Nephrol. 2011;7:226–35.CrossRefPubMedGoogle Scholar
  15. 15.
    Daemen T, Veninga A, Regts J, Scherphof GL. Maintenance of tumoricidal activity and susceptibility to reactivation of subpopulations of rat liver macrophages. J Immunother. 1991;10:200–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Macias WL, Mueller BA, Scarim SK. Vancomycin pharmacokinetics in acute renal failure: preservation of nonrenal clearance. Clin Pharmacol Ther. 1991;50:688–94.CrossRefPubMedGoogle Scholar
  17. 17.
    Winter M. Basic clinical pharmacokinetics. 3rd ed. Philadelphia: Lippincott, Williams and Wilkins; 1994.Google Scholar
  18. 18.
    Wilkinson G. Pharmacokinetics: the dynamics of drug absorption, distribution and elimination. In: Hardman JG, Limbird LE, editors. Goodman and Gilman’s: the pharmacological basis of therapeutics. New York: McGraw-Hill; 2001. p. 9–23.Google Scholar
  19. 19.
    Lam YW, Banerji S, Hatfield C, Talbert RL. Principles of drug administration in renal insufficiency. Clin Pharmacokinet. 1997;32:30–57.CrossRefPubMedGoogle Scholar
  20. 20.
    Etemad B. Gastrointestinal complications of renal failure. Gastroenterol Clin N Am. 1998;27:875–92.CrossRefGoogle Scholar
  21. 21.
    Boucher BA, Wood GC, Swanson JM. Pharmacokinetic changes in critical illness. Crit Care Clin. 2006;22:255–71. viCrossRefPubMedGoogle Scholar
  22. 22.
    Tarling MM, Toner CC, Withington PS, Baxter MK, Whelpton R, Goodhill DR. A model of gastric emptying using paracetamol absorption in intensive care patients. Intensive Care Med. 1997;23:256–60.CrossRefPubMedGoogle Scholar
  23. 23.
    Ariano RE, Sitar DS, Zelenitsky SA, et al. Enteric absorption and pharmacokinetics of oseltamivir in critically ill patients with pandemic (H1N1) influenza. CMAJ. 2010;182:357–63.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Brown-Cartwright D, Smith HJ, Feldman M. Gastric emptying of an indigestible solid in patients with end-stage renal disease on continuous ambulatory peritoneal dialysis. Gastroenterology. 1988;95:49–51.CrossRefPubMedGoogle Scholar
  25. 25.
    Wright RA, Clemente R, Wathen R. Gastric emptying in patients with chronic renal failure receiving hemodialysis. Arch Intern Med. 1984;144:495–6.CrossRefPubMedGoogle Scholar
  26. 26.
    Soffer EE, Geva B, Helman C, Avni Y, Bar-Meir S. Gastric emptying in chronic renal failure patients on hemodialysis. J Clin Gastroenterol. 1987;9:651–3.CrossRefPubMedGoogle Scholar
  27. 27.
    McNamee PT, Moore GW, McGeown MG, Doherty CC, Collins BJ. Gastric emptying in chronic renal failure. Br Med J (Clin Res Ed). 1985;291:310–1.CrossRefGoogle Scholar
  28. 28.
    Freeman JG, Cobden I, Heaton A, Keir M. Gastric emptying in chronic renal failure. Br Med J (Clin Res Ed). 1985;291:1048.CrossRefGoogle Scholar
  29. 29.
    St Peter WL, Redic-Kill KA, Halstenson CE. Clinical pharmacokinetics of antibiotics in patients with impaired renal function. Clin Pharmacokinet. 1992;22:169–210.CrossRefPubMedGoogle Scholar
  30. 30.
    Gugler R, Allgayer H. Effects of antacids on the clinical pharmacokinetics of drugs. An update. Clin Pharmacokinet. 1990;18:210–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Zhang Y, Benet LZ. The gut as a barrier to drug absorption: combined role of cytochrome P450 3A and P-glycoprotein. Clin Pharmacokinet. 2001;40:159–68.CrossRefPubMedGoogle Scholar
  32. 32.
    Doucet J, Fresel J, Hue G, Moore N. Protein binding of digitoxin, valproate and phenytoin in sera from diabetics. Eur J Clin Pharmacol. 1993;45:577–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Gabardi S, Abramson S. Drug dosing in chronic kidney disease. Med Clin North Am. 2005;89:649–87.CrossRefPubMedGoogle Scholar
  34. 34.
    MacKichan J. Influence of protein binding and the use of unbound (free) drug concentrations. In: Evans W, Schentag JJ, Jusko WJ, editors. Applied pharmacokinetics. 3rd ed. Applied Therapeutics: Vancouver; 1992. p. 1–48.Google Scholar
  35. 35.
    Klotz U. Pathophysiological and disease-induced changes in drug distribution volume: pharmacokinetic implications. Clin Pharmacokinet. 1976;1:204–18.CrossRefPubMedGoogle Scholar
  36. 36.
    Reidenberg MM. The binding of drugs to plasma proteins and the interpretation of measurements of plasma concentrations of drugs in patients with poor renal function. Am J Med. 1977;62:466–70.CrossRefPubMedGoogle Scholar
  37. 37.
    Torbic H, Forni A, Anger KE, DeGrado JR, Greenwood BC. Use of antiepileptics for seizure prophylaxis after traumatic brain injury. Am J Health Syst Pharm. 2013;70:759–66.CrossRefPubMedGoogle Scholar
  38. 38.
    Power BM, Forbes AM, van Heerden PV, Ilett KF. Pharmacokinetics of drugs used in critically ill adults. Clin Pharmacokinet. 1998;34:25–56.CrossRefPubMedGoogle Scholar
  39. 39.
    Brezis M, Rosen S, Epstein FH. Acute renal failure. In: Brenner B, Rector WG, editors. The kidney. 5th ed. Philadelphia: WB Saunders; 1996. p. 735–79.Google Scholar
  40. 40.
    Reed WE Jr, Sabatini S. The use of drugs in renal failure. Semin Nephrol. 1986;6:259–95.PubMedGoogle Scholar
  41. 41.
    Nissenson AR. Acute renal failure: definition and pathogenesis. Kidney Int Suppl. 1998;66:S7–10.PubMedGoogle Scholar
  42. 42.
    Gibson TP. Renal disease and drug metabolism: an overview. Am J Kidney Dis. 1986;8:7–17.CrossRefPubMedGoogle Scholar
  43. 43.
    Swan SK, Bennett WM. Drug dosing guidelines in patients with renal failure. West J Med. 1992;156:633–8.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Nolin TD, Frye RF, Matzke GR. Hepatic drug metabolism and transport in patients with kidney disease. Am J Kidney Dis. 2003;42:906–25.CrossRefPubMedGoogle Scholar
  45. 45.
    Aronoff G, Berns J, Brier M. Drug prescribing in renal failure: dosing guidelines for adults. 4th ed. Philadelphia: American College of Physicians; 1999.Google Scholar
  46. 46.
    Wu CY, Benet LZ, Hebert MF, et al. Differentiation of absorption and first-pass gut and hepatic metabolism in humans: studies with cyclosporine. Clin Pharmacol Ther. 1995;58:492–7.CrossRefPubMedGoogle Scholar
  47. 47.
    Dreisbach AW, Lertora JJ. The effect of chronic renal failure on hepatic drug metabolism and drug disposition. Semin Dial. 2003;16:45–50.CrossRefPubMedGoogle Scholar
  48. 48.
    Yuan R, Venitz J. Effect of chronic renal failure on the disposition of highly hepatically metabolized drugs. Int J Clin Pharmacol Ther. 2000;38:245–53.CrossRefGoogle Scholar
  49. 49.
    Leblond FA, Giroux L, Villeneuve JP, Pichette V. Decreased in vivo metabolism of drugs in chronic renal failure. Drug Metab Dispos. 2000;28:1317–20.PubMedGoogle Scholar
  50. 50.
    Pichette V, Leblond FA. Drug metabolism in chronic renal failure. Curr Drug Metab. 2003;4:91–103.CrossRefPubMedGoogle Scholar
  51. 51.
    Vilay AM, Churchwell MD, Mueller BA. Clinical review: drug metabolism and nonrenal clearance in acute kidney injury. Crit Care. 2008;12:235.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Mueller BA, Scarim SK, Macias WL. Comparison of imipenem pharmacokinetics in patients with acute or chronic renal failure treated with continuous hemofiltration. Am J Kidney Dis. 1993;21:172–9.CrossRefPubMedGoogle Scholar
  53. 53.
    Lee YH, Lee MH, Shim CK. Decreased systemic clearance of diltiazem with increased hepatic metabolism in rats with uranyl nitrate-induced acute renal failure. Pharm Res. 1992;9:1599–606.CrossRefPubMedGoogle Scholar
  54. 54.
    Leakey TE, Elias-Jones AC, Coates PE, Smith KJ. Pharmacokinetics of theophylline and its metabolites during acute renal failure. A case report. Clin Pharmacokinet. 1991;21:400–8.CrossRefPubMedGoogle Scholar
  55. 55.
    Nielson C. Pharmacologic considerations in critical care of the elderly. Clin Geriatr Med. 1994;10:71–89.CrossRefPubMedGoogle Scholar
  56. 56.
    Westphal JF, Brogard JM. Drug administration in chronic liver disease. Drug Saf. 1997;17:47–73.CrossRefPubMedGoogle Scholar
  57. 57.
    Horl WH, Druml W, Stevens PE. Pathophysiology of ARF in the ICU. Int J Artif Organs. 1996;19:84–6.CrossRefPubMedGoogle Scholar
  58. 58.
    Anders MW. Metabolism of drugs by the kidney. Kidney Int. 1980;18:636–47.CrossRefPubMedGoogle Scholar
  59. 59.
    Somogyi A. Renal transport of drugs: specificity and molecular mechanisms. Clin Exp Pharmacol Physiol. 1996;23:986–9.CrossRefPubMedGoogle Scholar
  60. 60.
    Schmidt C, Hocherl K, Schweda F, Bucher M. Proinflammatory cytokines cause down-regulation of renal chloride entry pathways during sepsis. Crit Care Med. 2007;35(9):2110.CrossRefPubMedGoogle Scholar
  61. 61.
    Blot S, Lipman J, Roberts DM, Roberts JA. The influence of acute kidney injury on antimicrobial dosing in critically ill patients: are dose reductions always necessary? Diagn Microbiol Infect Dis. 2014;79:77–84.CrossRefPubMedGoogle Scholar
  62. 62.
    Himmelfarb J, Evanson J, Hakim RM, Freedman S, Shyr Y, Ikizler TA. Urea volume of distribution exceeds total body water in patients with acute renal failure. Kidney Int. 2002;61:317–23.CrossRefPubMedGoogle Scholar
  63. 63.
    Gilmore JF, Kim M, LaSalvia MT, Mahoney MV. Treatment of enterococcal peritonitis with intraperitoneal daptomycin in a vancomycin-allergic patient and a review of the literature. Perit Dial Int. 2013;33:353–7.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Perazella M. Drug use and nephrotoxicity in the intensive care unit. Kidney Int. 2012;81:1172–8.CrossRefPubMedGoogle Scholar
  65. 65.
    Kelly KJ, Molitoris BA. Acute renal failure in the new millennium: time to consider combination therapy. Semin Nephrol. 2000;20:4–19.PubMedGoogle Scholar
  66. 66.
    Piazza G, Nguyen TN, Cios D, et al. Anticoagulation-associated adverse drug events. Am J Med. 2011;124:1136–42.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Bennett WM, Aronoff GR, Morrison G, et al. Drug prescribing in renal failure: dosing guidelines for adults. Am J Kidney Dis. 1983;3:155–93.CrossRefPubMedGoogle Scholar
  68. 68.
    Boccardo P, Remuzzi G, Galbusera M. Platelet dysfunction in renal failure. Semin Thromb Hemost. 2004;30:579–89.CrossRefPubMedGoogle Scholar
  69. 69.
    Levine MN, Raskob G, Landefeld S, Kearon C. Hemorrhagic complications of anticoagulant treatment. Chest. 2001;119:108S–21S.CrossRefPubMedGoogle Scholar
  70. 70.
    Brinkman WT, Williams WH, Guyton RA, Jones EL, Craver JM. Valve replacement in patients on chronic renal dialysis: implications for valve prosthesis selection. Ann Thorac Surg. 2002;74:37–42; discussion.CrossRefPubMedGoogle Scholar
  71. 71.
    Howard PA. Low molecular weight heparins in special populations. J Infus Nurs. 2003;26:304–10.CrossRefPubMedGoogle Scholar
  72. 72.
    Wong GC, Giugliano RP, Antman EM. Use of low-molecular-weight heparins in the management of acute coronary artery syndromes and percutaneous coronary intervention. JAMA. 2003;289:331–42.CrossRefPubMedGoogle Scholar
  73. 73.
    Hull RD, Pineo GF, Stein PD, et al. Extended out-of-hospital low-molecular-weight heparin prophylaxis against deep venous thrombosis in patients after elective hip arthroplasty: a systematic review. Ann Intern Med. 2001;135:858–69.CrossRefPubMedGoogle Scholar
  74. 74.
    De Lorenzo F, Noorani A, Kakkar VV. Current trends in the management of thromboembolic events. QJM. 2001;94:179–85.CrossRefPubMedGoogle Scholar
  75. 75.
    Polkinghorne KR, McMahon LP, Becker GJ. Pharmacokinetic studies of dalteparin (Fragmin), enoxaparin (Clexane), and danaparoid sodium (Orgaran) in stable chronic hemodialysis patients. Am J Kidney Dis. 2002;40(5):990.CrossRefPubMedGoogle Scholar
  76. 76.
    Sanderink GJ, Guimart CG, Ozoux ML, Jariwala NU, Shukla UA, Boutouyrie BX. Pharmacokinetics and pharmacodynamics of the prophylactic dose of enoxaparin once daily over 4 days in patients with renal impairment. Thromb Res. 2002;105:225–31.CrossRefPubMedGoogle Scholar
  77. 77.
    Hirsh J, Warkentin TE, Shaughnessy SG, et al. Heparin and low-molecular-weight heparin: mechanisms of action, pharmacokinetics, dosing, monitoring, efficacy, and safety. Chest. 2001;119:64S–94S.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Gerlach AT, Pickworth KK, Seth SK, Tanna SB, Barnes JF. Enoxaparin and bleeding complications: a review in patients with and without renal insufficiency. Pharmacotherapy. 2000;20:771–5.CrossRefPubMedGoogle Scholar
  79. 79.
    Spinler SA, Inverso SM, Cohen M, Goodman SG, Stringer KA, Antman EM. Safety and efficacy of unfractionated heparin versus enoxaparin in patients who are obese and patients with severe renal impairment: analysis from the ESSENCE and TIMI 11B studies. Am Heart J. 2003;146:33–41.CrossRefPubMedGoogle Scholar
  80. 80.
    Fischer KG. Hirudin in renal insufficiency. Semin Thromb Hemost. 2002;28:467–82.CrossRefPubMedGoogle Scholar
  81. 81.
    Poschel KA, Bucha E, Esslinger HU, et al. Pharmacodynamics and pharmacokinetics of polyethylene glycol-hirudin in patients with chronic renal failure. Kidney Int. 2000;58:2478–84.CrossRefPubMedGoogle Scholar
  82. 82.
    Swan SK, Hursting MJ. The pharmacokinetics and pharmacodynamics of argatroban: effects of age, gender, and hepatic or renal dysfunction. Pharmacotherapy. 2000;20:318–29.CrossRefPubMedGoogle Scholar
  83. 83.
    Arpino PA, Hallisey RK. Effect of renal function on the pharmacodynamics of argatroban. Ann Pharmacother. 2004;38:25–9.CrossRefPubMedGoogle Scholar
  84. 84.
    Kubiak DW, Szumita PM, Fanikos JR. Extensive prolongation of aPTT with argatroban in an elderly patient with improving renal function, normal hepatic enzymes, and metastatic lung cancer. Ann Pharmacother. 2005;39:1119–23.CrossRefPubMedGoogle Scholar
  85. 85.
    Gilmore JF, Adams CD, Blum RM, Fanikos J, Hirning BA, Matta L. Evaluation of a multi-target direct thrombin inhibitor dosing and titration guideline for patients with suspected heparin-induced thrombocytopenia. Am J Hematol. 2015;90:E143–5.CrossRefPubMedGoogle Scholar
  86. 86.
    Harenberg J, Kramer S, Du S, et al. Measurement of rivaroxaban and apixaban in serum samples of patients. Eur J Clin Investig. 2014;44:743–52.CrossRefGoogle Scholar
  87. 87.
    Dinkelaar J, Patiwael S, Harenberg J, Leyte A, Brinkman HJM. Global coagulation tests: their applicability for measuring direct factor Xa- and thrombin inhibition and reversal of anticoagulation by prothrombin complex concentrate. Clin Chem Lab Med. 2014;52:1615–23.PubMedGoogle Scholar
  88. 88.
    Wynckel A, Ebikili B, Melin JP, Randoux C, Lavaud S, Chanard J. Long-term follow-up of acute renal failure caused by angiotensin converting enzyme inhibitors. Am J Hypertens. 1998;11:1080–6.CrossRefPubMedGoogle Scholar
  89. 89.
    Shilliday IR, Quinn KJ, Allison ME. Loop diuretics in the management of acute renal failure: a prospective, double-blind, placebo-controlled, randomized study. Nephrol Dial Transplant. 1997;12:2592–6.CrossRefPubMedGoogle Scholar
  90. 90.
    Kellum JA. Use of diuretics in the acute care setting. Kidney Int Suppl. 1998;66:S67–70.PubMedGoogle Scholar
  91. 91.
    Nigwekar S, Walkar S. Diuretics in acute kidney injury. Semin Nephrol. 2011;31:523–34.CrossRefPubMedGoogle Scholar
  92. 92.
    Agarwal R, Sinha A. Thiazide diuretics in advanced chronic kidney disease. J Am Soc Hypertens. 2012;6:299–308.CrossRefPubMedGoogle Scholar
  93. 93.
    Segar JL, Chemtob S, Bell EF. Changes in body water compartments with diuretic therapy in infants with chronic lung disease. Early Hum Dev. 1997;48:99–107.CrossRefPubMedGoogle Scholar
  94. 94.
    Ellison DH. Diuretic resistance: physiology and therapeutics. Semin Nephrol. 1999;19:581–97.PubMedGoogle Scholar
  95. 95.
    Paton RR, Kane RE. Long-term diuretic therapy with metolazone of renal failure and the nephrotic syndrome. J Clin Pharmacol. 1977;17:243–51.CrossRefPubMedGoogle Scholar
  96. 96.
    Whelton A. Renal aspects of treatment with conventional nonsteroidal anti-inflammatory drugs versus cyclooxygenase-2-specific inhibitors. Am J Med. 2001;110(Suppl 3A):33S–42S.CrossRefPubMedGoogle Scholar
  97. 97.
    Ungprasert P, Cheungpasitporn W, Crowson C, Matteson E. Individual non-steroidal anti-inflammatory drugs and risk of acute kidney injury: a systematic review and meta-analysis of observational studies. Eur J Intern Med. 2015;26:285–91.CrossRefPubMedGoogle Scholar
  98. 98.
    DeMaria AN, Weir MR. Coxibs—beyond the GI tract: renal and cardiovascular issues. J Pain Symptom Manag. 2003;25:S41–9.CrossRefGoogle Scholar
  99. 99.
    Wen SF. Nephrotoxicities of nonsteroidal anti-inflammatory drugs. J Formos Med Assoc. 1997;96:157–71.PubMedGoogle Scholar
  100. 100.
    Nderitu P, Doos L, Jones PW, Davies SJ, Kadam UT. Non-steroidal anti-inflammatory drugs and chronic kidney disease progression: a systematic review. Fam Pract. 2013;30:247–55.CrossRefPubMedGoogle Scholar
  101. 101.
    Phan O, Meier P, Burnier M. Are cyclooxygenase-2-selective inhibitors safe for the kidneys? Joint Bone Spine. 2003;70:237–41.CrossRefPubMedGoogle Scholar
  102. 102.
    Hall LG, Oyen LJ, Murray MJ. Analgesic agents. Pharmacology and application in critical care. Crit Care Clin. 2001;17:899–923. viiiCrossRefPubMedGoogle Scholar
  103. 103.
    Drayer DE. Pharmacologically active metabolites of drugs and other foreign compounds. Clinical, pharmacological, therapeutic and toxicological considerations. Drugs. 1982;24:519–42.CrossRefPubMedGoogle Scholar
  104. 104.
    Szeto HH, Inturrisi CE, Houde R, Saal S, Cheigh J, Reidenberg MM. Accumulation of normeperidine, an active metabolite of meperidine, in patients with renal failure of cancer. Ann Intern Med. 1977;86:738–41.CrossRefPubMedGoogle Scholar
  105. 105.
    Hassan H, Bastani B, Gellens M. Successful treatment of normeperidine neurotoxicity by hemodialysis. Am J Kidney Dis. 2000;35:146–9.CrossRefPubMedGoogle Scholar
  106. 106.
    Osborne R, Joel S, Grebenik K, Trew D, Slevin M. The pharmacokinetics of morphine and morphine glucuronides in kidney failure. Clin Pharmacol Ther. 1993;54:158–67.CrossRefPubMedGoogle Scholar
  107. 107.
    Chauvin M, Sandouk P, Scherrmann JM, Farinotti R, Strumza P, Duvaldestin P. Morphine pharmacokinetics in renal failure. Anesthesiology. 1987;66:327–31.CrossRefPubMedGoogle Scholar
  108. 108.
    Morphine. Micromedex Solutions. Truven Health Analytics, Inc. Ann Arbor, MI. Available at: Accessed May 1, 2016.
  109. 109.
    Bailie GR, Johnson CA. Safety of propoxyphene in dialysis patients. Semin Dial. 2002;15:375.CrossRefPubMedGoogle Scholar
  110. 110.
    Almirall J, Montoliu J, Torras A, Revert L. Propoxyphene-induced hypoglycemia in a patient with chronic renal failure. Nephron. 1989;53:273–5.CrossRefPubMedGoogle Scholar
  111. 111.
    Roberts SM, Levy G. Pharmacokinetic studies of propoxyphene IV: effect of renal failure on systemic clearance in rats. J Pharm Sci. 1980;69:363–4.CrossRefPubMedGoogle Scholar
  112. 112.
    Dean M. Opioids in renal failure and dialysis patients. J Pain Symptom Manag. 2004;28:497–504.CrossRefGoogle Scholar
  113. 113.
    Salomon L, Levu S, Deray G, Launay-Vacher V, Brucker G, Ravaud P. Assessing residents’ prescribing behavior in renal impairment. Int J Qual Health Care. 2003;15:235–40.CrossRefPubMedGoogle Scholar
  114. 114.
    Pillans PI, Landsberg PG, Fleming AM, Fanning M, Sturtevant JM. Evaluation of dosage adjustment in patients with renal impairment. Intern Med J. 2003;33:10–3.CrossRefPubMedGoogle Scholar
  115. 115.
    Papaioannou A, Clarke JA, Campbell G, Bedard M. Assessment of adherence to renal dosing guidelines in long-term care facilities. J Am Geriatr Soc. 2000;48:1470–3.CrossRefPubMedGoogle Scholar
  116. 116.
    Gilbert DN, Bennett WM. Use of antimicrobial agents in renal failure. Infect Dis Clin N Am. 1989;3:517–31.Google Scholar
  117. 117.
    Fissell W. Laboratory assays in renal failure: therapeutic drug monitoring. Semin Dial. 2014;27:614–7.CrossRefPubMedGoogle Scholar
  118. 118.
    Craig W. Pharmacodynamics of antimicrobial agents as a basis for determining dosage regimens. Eur J Clin Microbiol Infect Dis. 1993;12(Suppl 1):S6–8.CrossRefPubMedGoogle Scholar
  119. 119.
    Aronoff GR. Antimicrobial therapy in patients with impaired renal function. Am J Kidney Dis. 1983;3:106–10.CrossRefPubMedGoogle Scholar
  120. 120.
    Hewitt WL, McHenry MC. Blood level determinations of antimicrobial drugs. Some clinical considerations. Med Clin North Am. 1978;62:1119–40.CrossRefPubMedGoogle Scholar
  121. 121.
    Lacy MK, Nicolau DP, Nightingale CH, Quintiliani R. The pharmacodynamics of aminoglycosides. Clin Infect Dis. 1998;27:23–7.CrossRefPubMedGoogle Scholar
  122. 122.
    Tulkens PM. Efficacy and safety of aminoglycosides once-a-day: experimental and clinical data. Scand J Infect Dis Suppl. 1990;74:249–57.PubMedGoogle Scholar
  123. 123.
    Humes HD. Insights into ototoxicity. Analogies to nephrotoxicity. Ann N Y Acad Sci. 1999;884:15–8.CrossRefPubMedGoogle Scholar
  124. 124.
    Kirkpatrick CM, Duffull SB, Begg EJ. Pharmacokinetics of gentamicin in 957 patients with varying renal function dosed once daily. Br J Clin Pharmacol. 1999;47:637–43.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Swan SK. Aminoglycoside nephrotoxicity. Semin Nephrol. 1997;17:27–33.PubMedGoogle Scholar
  126. 126.
    Townsend PL, Fink MP, Stein KL, Murphy SG. Aminoglycoside pharmacokinetics: dosage requirements and nephrotoxicity in trauma patients. Crit Care Med. 1989;17:154–7.CrossRefPubMedGoogle Scholar
  127. 127.
    Duszynska W, Taccone FS, Hurkacz M, Kowalska-Krochmal B, Wiela-Hojenska A, Kubler A. Therapeutic drug monitoring of amikacin in septic patients. Crit Care. 2013;17:R165–R74.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Freeman CD, Nicolau DP, Belliveau PP, Nightingale CH. Once-daily dosing of aminoglycosides: review and recommendations for clinical practice. J Antimicrob Chemother. 1997;39:677–86.CrossRefPubMedGoogle Scholar
  129. 129.
    Anaizi N. Once-daily dosing of aminoglycosides. A consensus document. Int J Clin Pharmacol Ther. 1997;35:223–6.PubMedGoogle Scholar
  130. 130.
    Ali MZ, Goetz MB. A meta-analysis of the relative efficacy and toxicity of single daily dosing versus multiple daily dosing of aminoglycosides. Clin Infect Dis. 1997;24:796–809.CrossRefPubMedGoogle Scholar
  131. 131.
    Boyer A, Gruson D, Bouchet S, et al. Aminoglycosides in septic shock: an overview, with specific consideration given to their nephrotoxic risk. Drug Saf. 2013;36:217–30.CrossRefPubMedGoogle Scholar
  132. 132.
    DeGrado JR, Cios D, Greenwood BC, Kubiak DW, Szumita PM. Pharmacodynamic target attainment with high-dose extended-interval tobramycin therapy in patients with cystic fibrosis. J Chemother. 2014;26:101–4.CrossRefPubMedGoogle Scholar
  133. 133.
    Barclay ML, Kirkpatrick CM, Begg EJ. Once daily aminoglycoside therapy. Is it less toxic than multiple daily doses and how should it be monitored? Clin Pharmacokinet. 1999;36:89–98.CrossRefPubMedGoogle Scholar
  134. 134.
    Baddour LM, Wilson WR, Bayer AS, On behalf of the American Heart Association Committee on Rheumatic Fever E, and Kawasaki Disease of the Council on Cardiovascular Disease in the Young, Council on Clinical Cardiology, Council on Cardiovascular Surgery and Anesthesia, and Stroke Council. Infective endocarditis in adults: diagnosis, antimicrobial therapy, and management of complications: a scientific statement for healthcare professionals from the American Heart Association. Circulation. 2015;132.Google Scholar
  135. 135.
    Habib G, Lacellotti P, Antunes MJ, et al. 2015 ESC guidelines for the management of infective endocarditis. The Task Force for the Management of Infective Endocarditis of the European Society of Cardiology (ESC). Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). Eur Heart J. 36(44):2015, 3075–3128.Google Scholar
  136. 136.
    Fernandez-Hidalgo N, Almirante B, Gavalda J, et al. Ampicillin plus Ceftriaxone is as effective as Ampicillin plus Gentamicin for treating enterococcus faecalis infective endocarditis. CID. 2013;56:1261–8.CrossRefGoogle Scholar
  137. 137.
    Bernstein JM, Erk SD. Choice of antibiotics, pharmacokinetics, and dose adjustments in acute and chronic renal failure. Med Clin North Am. 1990;74:1059–76.CrossRefPubMedGoogle Scholar
  138. 138.
    Verbist L, Verpooten GA, Giuliano RA, et al. Pharmacokinetics and tolerance after repeated doses of imipenem/cilastatin in patients with severe renal failure. J Antimicrob Chemother. 1986;18 Suppl E:115–20.CrossRefPubMedGoogle Scholar
  139. 139.
    Cunha GM, Moraes RA, Moraes GA, Franca MC Jr, Moraes MO, Viana GS. Nerve growth factor, ganglioside and vitamin E reverse glutamate cytotoxicity in hippocampal cells. Eur J Pharmacol. 1999;367:107–12.CrossRefPubMedGoogle Scholar
  140. 140.
    Manian FA, Stone WJ, Alford RH. Adverse antibiotic effects associated with renal insufficiency. Rev Infect Dis. 1990;12:236–49.CrossRefPubMedGoogle Scholar
  141. 141.
    Giles LJ, Jennings AC, Thomson AH, Creed G, Beale RJ, McLuckie A. Pharmacokinetics of meropenem in intensive care unit patients receiving continuous veno-venous hemofiltration or hemodiafiltration. Crit Care Med. 2000;28:632–7.CrossRefPubMedGoogle Scholar
  142. 142.
    Ververs TF, van Dijk A, Vinks SA, et al. Pharmacokinetics and dosing regimen of meropenem in critically ill patients receiving continuous venovenous hemofiltration. Crit Care Med. 2000;28:3412–6.CrossRefPubMedGoogle Scholar
  143. 143.
    Kirby WM, De Maine JB, Serrill WS. Pharmacokinetics of the cephalosporins in healthy volunteers and uremic patients. Postgrad Med J. 1971;47(Suppl):41–6.Google Scholar
  144. 144.
    Wright N, Wise R, Hegarty T. Cefotetan elimination in patients with varying degrees of renal dysfunction. J Antimicrob Chemother. 1983;11(Suppl):213–6.CrossRefPubMedGoogle Scholar
  145. 145.
    Tam VH, McKinnon PS, Akins RL, Drusano GL, Rybak MJ. Pharmacokinetics and pharmacodynamics of cefepime in patients with various degrees of renal function. Antimicrob Agents Chemother. 2003;47:1853–61.CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Harding I, Sorgel F. Comparative pharmacokinetics of teicoplanin and vancomycin. J Chemother. 2000;12(Suppl 5):15–20.CrossRefPubMedGoogle Scholar
  147. 147.
    Linden PK. Amphotericin B lipid complex for the treatment of invasive fungal infections. Expert Opin Pharmacother. 2003;4:2099–110.CrossRefPubMedGoogle Scholar
  148. 148.
    Pinder M, Bellomo R, Lipman J. Pharmacological principles of antibiotic prescription in the critically ill. Anaesth Intensive Care. 2002;30:134–44.PubMedGoogle Scholar
  149. 149.
    Falagas ME, Tansarli GS, Ikawa K, Vardakas KZ. Clinical outcomes with extended or continuous versus short-term intravenous infusion of carbapenems and piperacillin/tazobactam: a systematic review and meta-analysis. Clin Infect Dis. 2013;56:272–82.CrossRefPubMedGoogle Scholar
  150. 150.
    Hohlfelder B, Kubiak DW, DeGrado JR, Reardon DP, Szumita PM. Implementation of a prolonged infusion guideline for time dependent antimicrobial agents at a tertiary academic medical center. Am J Ther. 2015;Accepted ahead of publication.Google Scholar
  151. 151.
    Nightingale CH. Pharmacokinetic considerations in quinolone therapy. Pharmacotherapy. 1993;13:34S–8S.PubMedGoogle Scholar
  152. 152.
    Rodvold KA, Neuhauser M. Pharmacokinetics and pharmacodynamics of fluoroquinolones. Pharmacotherapy. 2001;21:233S–52S.CrossRefPubMedGoogle Scholar
  153. 153.
    Boelaert J, Valcke Y, Schurgers M, et al. The pharmacokinetics of ciprofloxacin in patients with impaired renal function. J Antimicrob Chemother. 1985;16:87–93.CrossRefPubMedGoogle Scholar
  154. 154.
    Garaud JJ, Regnier B, Inglebert F, Faurisson F, Bauchet J, Vachon F. Vancomycin pharmacokinetics in critically ill patients. J Antimicrob Chemother. 1984;14(Suppl D):53–7.CrossRefPubMedGoogle Scholar
  155. 155.
    Gonzalez-Martin G, Acuna V, Perez C, Labarca J, Guevara A, Tagle R. Pharmacokinetics of vancomycin in patients with severely impaired renal function. Int J Clin Pharmacol Ther. 1996;34:71–5.PubMedGoogle Scholar
  156. 156.
    Whelton A. Antibiotic pharmacokinetics and clinical application in renal insufficiency. Med Clin North Am. 1982;66:267–81.CrossRefPubMedGoogle Scholar
  157. 157.
    Marquis KA, DeGrado JR, Labonville S, Kubiak DW, Szumita PM. Evaluation of a pharmacist-directed vancomycin dosing and monitoring pilot program at a tertiary academic medical center. Ann Pharmacother. 2015;49:1009–14.CrossRefPubMedGoogle Scholar
  158. 158.
    Sinha Ray A, Haikal A, Hammoud KA, Yu AS. Vancomycin and the risk of AKI: a systematic review and meta-analysis. Clin J Am Soc Nephrol. 2016;11:2132–40.CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Gupta K, Gupta A. Mucormycosis and acute kidney injury. J Nephropathol. 2012;1:155–9.CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Harbarth S, Pestotnik SL, Lloyd JF, Burke JP, Samore MH. The epidemiology of nephrotoxicity associated with conventional amphotericin B therapy. Am J Med. 2001;111:528–34.CrossRefPubMedGoogle Scholar
  161. 161.
    Safdar A, Ma J, Saliba F, et al. Drug-induced nephrotoxicity caused by amphotericin B lipid complex and liposomal amphotericin B: a review and meta-analysis. Medicine. 2010;89:236–44.CrossRefPubMedGoogle Scholar
  162. 162.
    Costa S, Nucci M. Can we decrease amphotericin nephrotoxicity? Curr Opin Crit Care. 2001;7:379–83.CrossRefPubMedGoogle Scholar
  163. 163.
    Ullmann AJ. Review of the safety, tolerability, and drug interactions of the new antifungal agents caspofungin and voriconazole. Curr Med Res Opin. 2003;19:263–71.CrossRefPubMedGoogle Scholar
  164. 164.
    Burkhardt O, Thon S, Burhenne J, Welte T, Kielstein J. Sulphobutylether-B-cyclodextrin accumulation in critically ill patients with acute kidney injury treated with intravenous voriconazole under extended daily dialysis. Int J Antimicrob Agents. 2010;36:93–4.CrossRefPubMedGoogle Scholar
  165. 165.
    Lilly C, Welch V, Mayer T, Ranauro P, Meisner J, Luke D. Evaluation of intravenous voriconazole in patients with compromised renal function. BMC Infect Dis. 2013;13:14–21.CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Arredondo G, Martinez-Jorda R, Calvo R, Aguirre C, Suarez E. Protein binding of itraconazole and fluconazole in patients with chronic renal failure. Int J Clin Pharmacol Ther. 1994;32:361–4.PubMedGoogle Scholar
  167. 167.
    Grant SM, Clissold SP. Itraconazole. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in superficial and systemic mycoses. Drugs. 1989;37:310–44.CrossRefGoogle Scholar
  168. 168.
    Cresemba prescribing information. Astellas, 2015. Accessed 24 Oct 2015.
  169. 169.
    Cornely OA, Bohme A, Schmitt-Hoffmann A, Ullmann AJ. Safety and pharmacokinetics of isavuconazole as antifungal prophylaxis in acute myeloid leukemia patients with neutropenia: results of a phase 2, dose escalation study. Antimicrob Agents Chemother. 2015;59:2078–85.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jeremy R. DeGrado
    • 1
  • James F. Gilmore
    • 2
  • Benjamin Hohlfelder
    • 2
  • Craig A. Stevens
    • 2
  • Steven Gabardi
    • 3
    • 4
    • 5
    Email author
  1. 1.Pharmacy DepartmentBrigham and Women’s HospitalBostonUSA
  2. 2.Department of Pharmacy ServicesBrigham and Women’s HospitalBostonUSA
  3. 3.Department of Transplant SurgeryBrigham and Women’s HospitalBostonUSA
  4. 4.Department of Pharmacy Services/Renal DivisionBrigham and Women’s HospitalBostonUSA
  5. 5.Harvard Medical SchoolBostonUSA

Personalised recommendations