Advertisement

Cardiorenal Acute Kidney Injury: Epidemiology, Presentation, Causes, Pathophysiology, and Treatment

  • Claudio Ronco
  • Luca Di Lullo
Chapter

Abstract

Cardiovascular disease and major cardiovascular events represent the main cause of death in both acute and chronic kidney disease patients.

Kidney and heart failure are common and frequently coexist; this organ-organ interaction, also called organ cross talk, leads to a well-known definition of cardiorenal syndrome (CRS). Here, we’ll describe cardiovascular involvement in patients with acute kidney injury (AKI). Also known as type-3 CRS or acute reno-cardiac CRS, it occurs when AKI contributes to and/or precipitates the development of acute cardiac injury.

AKI may directly or indirectly produce an acute cardiac event, and it can be associated to volume overload, metabolic acidosis, and electrolyte disorders such as hyperkalemia and hypocalcemia; coronary artery disease, left ventricular dysfunction, and fibrosis have been also described in patients with AKI with consequent direct negative effects on cardiac performance.

Keywords

Acute kidney injury Type-3 cardiorenal syndrome Biomarkers Renal replacement therapy 

References

  1. 1.
    Ronco C, McCullough P, Anker SD, et al. Cardio-renal syndromes: report from the consensus conference of the acute dialysis quality initiative. Eur Heart J. 2010;31:703–11.CrossRefGoogle Scholar
  2. 2.
    Prabhu SD. Cytokine-induced modulation of cardiac function. Circ Res. 2004;95(12):1140–53.CrossRefGoogle Scholar
  3. 3.
    Kingma JG Jr, Vincent C, Rouleau JR, Kingma I. Influence of acute renal failure on coronary vasoregulation in dogs. J Am Soc Nephrol. 2006;17(5):1316–24.CrossRefGoogle Scholar
  4. 4.
    Bagshaw SM, Cruz DN. Aspromonte N, et al, and for the Acute Dialysis Quality Initiative (ADQI) Consensus Group. Epidemiology of cardio-renal syndrome: workgroup statements from the 7th ADQI Consensus Conference. Nephrol Dial Transplant. 2010;25:1406–16.CrossRefGoogle Scholar
  5. 5.
    Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky PM, the ADQI Workgroup. Acute renal failure-definition, outcome measures, animal models, fluid therapy and information technology needs. The Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8:R204–12.CrossRefGoogle Scholar
  6. 6.
    Mehta RL, Kellum JA, Shah SV, et al. Acute kidney injury network (AKIN): report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11:R31.CrossRefGoogle Scholar
  7. 7.
    Lewington A, Kanagasundaram S. Kidney diseases: Improving Global Outcomes (KDIGO) acute kidney injury clinical practice guideline. Kidney Int. 2012;2(1):1–138.CrossRefGoogle Scholar
  8. 8.
    Uchino S, Kellum JA, Bellomo R, et al. Beginning and Ending Supportive Therapy for the Kidney (BEST Kidney) investigators. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294:813–8.CrossRefGoogle Scholar
  9. 9.
    Dickstein K, Cohen-Solal A, Filipatos G, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). Eur J Heart Fail. 2008;10:933–89.CrossRefGoogle Scholar
  10. 10.
    Jessup M, Abraham WT, Casey DE, et al. ACCF/AHA guidelines for the diagnosis and management of heart failure in adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation. 2009;119:1977–2016.CrossRefGoogle Scholar
  11. 11.
    Gheorghiade M, Zannad F, Sopko G, et al. Failure syndromes: current state and framework for future research. Circulation. 2005;112:3958–68.CrossRefGoogle Scholar
  12. 12.
    Heywood JT, Fonarow GC, Costanzo MR, et al. High prevalence of renal dysfunction and its impact on outcome in 118465 patients hospitalized with acute decompensated heart failure: a report from the ADHERE database. J Card Fail. 2007;13:422–30.CrossRefGoogle Scholar
  13. 13.
    Siirila-Waris K, Lassus J, Melin J, et al. Characteristics, otucomes, and predictors of 1 year mortality in patients hospitalized for acute heart failure. Eur Heart J. 2006;27:3011–7.CrossRefGoogle Scholar
  14. 14.
    Ali T, Khan I, Simpson W, et al. Incidence and outcomes in acute kidney injury: a comprehensive population-based study. J Am Soc Nephrol. 2007;18:1292–8.CrossRefGoogle Scholar
  15. 15.
    De Abreu KLS, Silva Junior GB, Carreto AGC, et al. Acute kidney injury after trauma: prevalence, clinical characteristics and RIFLE classification. Indian J Crit Care Med. 2010;14:121–8.CrossRefGoogle Scholar
  16. 16.
    Raine A, Margreiter R, Brunner F, et al. Report on management of renal failure in Europe. XXII. Nephrol Dial Transplant. 1992;7(Suppl 2):7–35.PubMedGoogle Scholar
  17. 17.
    Schwilk B, Wiedeck H, Stein B, et al. Epidemiology of acute renal failure and outcome of haemodiafiltration in intensive care. Intensive Care Med. 1997;23:1204–11.CrossRefGoogle Scholar
  18. 18.
    Song JH, Humes HD. Renal cell therapy and beyond. Semin Dial. 2009;22:603–9.CrossRefGoogle Scholar
  19. 19.
    Wen X, Murugan R, Peng Z, Kellum JA. Pathophysiology of acute kidney injury: a new perspective. Contrib Nephrol. 2010;165:39–45.CrossRefGoogle Scholar
  20. 20.
    Bongartz LG, Cramer MJ, Doevendans PA, Joles JA, Braam B. The severe cardiorenal syndrome: ‘Guyton revisited’. Eur Heart J. 2005;26(1):11–7.CrossRefGoogle Scholar
  21. 21.
    Ma XL, Lefer DJ, Lefer AM, Rothlein R. Coronary endothelial and cardiac protective effects of a monoclonal antibody to intercellular adhesion molecule-1 in myocardial ischemia and reperfusion. Circulation. 1992;86(3):937–46.CrossRefGoogle Scholar
  22. 22.
    Blake P, Hasegawa Y, Khosla MC, Fouad-Tarazi F, Sakura N, Paganini EP. Isolation of “myocardial depressant factor(s)” from the ultrafiltrate of heart failure patients with acute renal failure. ASAIO J. 1996;42(5):M911–5.CrossRefGoogle Scholar
  23. 23.
    Edmunds NJ, Lal H, Woodward B. Effects of tumour necrosis factor-alpha on left ventricular function in the rat isolated perfused heart: possible mechanisms for a decline in cardiac function. Br J Pharmacol. 1999;126(1):189–96.CrossRefGoogle Scholar
  24. 24.
    Rauchhaus M, Doehner W, Francis DP, et al. Plasma cytokine parameters and mortality in patients with chronic heart failure. Circulation. 2000;102(25):3060–7.CrossRefGoogle Scholar
  25. 25.
    Chuasuwan A, Kellum JA. Cardio-renal syndrome type 3: epidemiology, pathophysiology, and treatment. Semin Nephrol. 2012;32(1):31–9.CrossRefGoogle Scholar
  26. 26.
    Kajstura J, Cigola E, Malhotra A, et al. Angiotensin II induces apoptosis of adult ventricular myocytes in vitro. J Mol Cell Cardiol. 1997;29(3):859–70.CrossRefGoogle Scholar
  27. 27.
    Nath KA, Grande JP, Croatt AJ, et al. Transgenic sickle mice are markedly sensitive to renal ischemia-reperfusion injury. Am J Pathol. 2005;166(4):963–72.CrossRefGoogle Scholar
  28. 28.
    Kelly KJ. Distant effects of experimental renal ischemia/reperfusion injury. J Am Soc Nephrol. 2003;14(6):1549–58.CrossRefGoogle Scholar
  29. 29.
    Bryant D, Becker L, Richardson J, et al. Cardiac failure in transgenic mice with myocardial expression of tumor necrosis factor-alpha. Circulation. 1998;97:1375–81.CrossRefGoogle Scholar
  30. 30.
    Liu YH, D’Ambrosio M, Liao TD, et al. N-acetyl-seryl-aspartyl-lysyl-proline prevents cardiac remodeling and dysfunction induced by galectin-3, a mammalian adhesion/growth-regulatory lectin. Am J Physiol Heart Circ Physiol. 2009;296(2):H404–12.CrossRefGoogle Scholar
  31. 31.
    De Deyn PP, vanholder R, D’Hooge R. Nitric oxide in uremia: effects of several potentially toxic guanidino compounds. Kidney Int. 2003;63(84 Suppl):S25–8.CrossRefGoogle Scholar
  32. 32.
    Scheuer J, Stezoski W. The effects of uremic compounds on cardiac function and metabolism. J Mol Cell Cardiol. 1973;5:287–300.CrossRefGoogle Scholar
  33. 33.
    Jackson G, Gibbs CR, Davies MK, Lip GY. ABC of heart failure. Pathophysiology. Br Med J. 2000;320:167–70.CrossRefGoogle Scholar
  34. 34.
    Li L, Lee EW, Ji H, Zukowska Z. Neuropeptide Y-induced acceleration of postangioplasty occlusion of rat carotid artery. Arterioscler Thromb Vasc Biol. 2003;23:1204–10.CrossRefGoogle Scholar
  35. 35.
    Shah BN, Greaves K. The cardio-renal syndrome: a review. Int J Nephrol. 2011;2011:920195.  https://doi.org/10.4061/2011/920195.CrossRefGoogle Scholar
  36. 36.
    Qin F, Patel R, Yan C, Liu W. NADPH oxidase is involved in angiotensin II-induced apoptosis in H9C2 cardiac muscle cells: effects of apocynin. Free Radic Biol Med. 2005;40:236–46.CrossRefGoogle Scholar
  37. 37.
    Chabrashvili T, Kitiyakara C, Blau J, et al. Effects of ANF II type 1 and 2 receptors on oxidative stress, renal NADPH oxidase, and SOD expression. Am J Physiol Regul Integr Comp Physiol. 2003;285:R117–24.CrossRefGoogle Scholar
  38. 38.
    Nakagami H, Takemoto M, Liao JK. NADPH oxidase-derived superoxide anion mediates angiotensin II-induced cardiac hypertrophy. J Mol Cell Cardiol. 2003;35:851–9.CrossRefGoogle Scholar
  39. 39.
    Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res. 1994;74:1141–8.CrossRefGoogle Scholar
  40. 40.
    Shannon TR, Pogwizd SM, Bers DM. Elevated sarcoplasmic reticulum Ca2+ leak in intact ventricular myocytes from rabbits in heart failure. Circ Res. 2003;93(7):592–4.CrossRefGoogle Scholar
  41. 41.
    Licurse A, Kim MC, Dziura J, Forman HP, Formica RN, Makarov DV, Parikh CR, Gross CP. Renal ultrasonography in the evaluation of acute kidney injury: developing a risk stratification framework. Arch Intern Med. 2010;170:1900–7.PubMedGoogle Scholar
  42. 42.
    Ozmen CA, Akin D, Bilek SU, Bayrak AH, Senturk S, Nazaroglu H. Ultrasound as a diagnostic tool to differentiate acute from chronic renal failure. Clin Nephrol. 2010;74:46–52.PubMedGoogle Scholar
  43. 43.
    Darmon M, Schortgen F, Vargas F, Liazydi A, Schlemmer B, Brun-Buisson C, Brochard L. Diagnostic accuracy of Doppler renal resistive index for reversibility of acute kidney injury in critically ill patients. Intensive Care Med. 2011;37(1):68–76.CrossRefGoogle Scholar
  44. 44.
    Di Lullo L, Floccari F, Granata A, D’Amelio A, Rivera R, Fiorini F, Malaguti M, Timio M. Ultrasonography: Ariadne’s thread in the diagnosis of cardiorenal syndrome. Cardiorenal Med. 2012;2(1):11–7; Epub 2011 Nov 30.CrossRefGoogle Scholar
  45. 45.
    Negishi K, Noiri E, Doi K, et al. Monitoring of urinary L-type fatty acid-binding protein predicts histological severity of acute kidney injury. Am J Pathol. 2009;174:1154–9.CrossRefGoogle Scholar
  46. 46.
    Hu M-C, Shi M, Zhang J, et al. Klotho deficiency is an early biomarker of renal ischemia-reperfusion injury and its replacement is protective. Kidney Int. 2010;78:1240–51.CrossRefGoogle Scholar
  47. 47.
    Reeves WB, Kwon O, Ramesh G. Netrin-1 and kidney injury. II. Netrin-1 is an early biomarker of acute kidney injury. Am J Physiol Renal Physiol. 2007;294:F731–F8.CrossRefGoogle Scholar
  48. 48.
    Hayashi H, Sato W, Maruyama S, et al. Urinary Midkine as a biomarker of acute kidney injury: comparison with three major biomarkers; NAG, IL-18 and NGAL [abstract]. NDT Plus. 2009;2:ii, 1634, Suppl 2.Google Scholar
  49. 49.
    McCullough PA, Nowak RM, McCord J, et al. B-type natriuretic peptide and clinical judgment in emergency diagnosis of heart failure: analysis from Breathing Not Properly (BNP) Multinational Study. Circulation. 2002;106:416–22.CrossRefGoogle Scholar
  50. 50.
    Wu AH, Jaffe AS, Apple FS, et al. National Academy of Clinical Biochemistry Laboratory Medicine practice guidelines: use of cardiac troponin and B-type natriuretic peptide or N-terminal proB-type natriuretic peptide for etiologies other than acute coronary syndromes and heart failure. Clin Chem. 2007;53:2086–96.CrossRefGoogle Scholar
  51. 51.
    Januzzi JL Jr, Camargo CA, Anwaruddin S, et al. The N-terminal Pro-BNP investigation of dyspnea in the emergency department (PRIDE) study. Am J Cardiol. 2005;95:948–54.CrossRefGoogle Scholar
  52. 52.
    Di Lullo L, Barbera V, Santoboni A, Bellasi A, Cozzolino M, De Pascalis A, Rivera R, Balducci A, Russo D, Ronco C. Troponins and chronic kidney disease. G Ital Nefrol. 2015;32(4).Google Scholar
  53. 53.
    Glatz JF, Vander Vusse FJ, Maessen JG, et al. Fatty acid-binding protein as marker of muscle injury: experimental fi and clinical application. Acta Anaesthesiol Scand Suppl. 1997;111:292–4.PubMedGoogle Scholar
  54. 54.
    Taglieri N, Fernandez-Berges DJ, Koenig W, et al. Plasma cystatin C for prediction of 1-year cardiac events in Mediterranean patients with non-ST elevation acute coronary syndromes. Atherosclerosis. 2010;209:300–5.CrossRefGoogle Scholar
  55. 55.
    Furtado MV, Rossini AP, Campani RB, et al. Interleukin-18: an independent predictor of cardiovascular events in patients with acute coronary syndrome after 6 months of follow-up. Coron Artery Dis. 2009;20:327–31.CrossRefGoogle Scholar
  56. 56.
    Liyan C, Jie Z, Xiaozhou H. Prognostic value of combination of heart-type fatty acid-binding protein and ischemia-modified albumin in patients with acute coronary syndromes and normal troponin T value. J Clin Lab Anal. 2009;23:14–8.CrossRefGoogle Scholar
  57. 57.
    Mehta RL, Pascual MT, Soroko SH, et al. Diuretics, mortality, and nonrecovery of renal function in acute renal failure. JAMA. 2002;288:2547–53.CrossRefGoogle Scholar
  58. 58.
    Bellomo R, Kellum JA, Ronco C. Acute kidney injury. Lancet. 2012;380:756–66.CrossRefGoogle Scholar
  59. 59.
    Srisawat N, Murugan R, Lee M, Kong L, Carter M, Angus DC, et al. Plasma neutrophil gelatinase-associated lipocalin predicts recovery from acute kidney injury following community-acquired pneumonia. Kidney Int. 2011;80:545–52.CrossRefGoogle Scholar
  60. 60.
    Srisawat N, Wen X, Lee M, Kong L, Elder M, Carter M, et al. Urinary biomarkers and renal recovery in critically ill patients with renal support. Clin J Am Soc Nephrol. 2011;6:1815–23.CrossRefGoogle Scholar
  61. 61.
    Payen D, Mateo J, Cavaillon JM, Fraisse F, Floriot C, Vicaut E. Impact of continuous venovenous hemofiltration on organ failure during the early phase of severe sepsis: a randomized controlled trial. Crit Care Med. 2009;37:803–10.CrossRefGoogle Scholar
  62. 62.
    Karvellas CJ, Farhat MR, Sajjad I, Mogensen SS, Leung AA, Wald R, et al. A comparison of early versus late initiation of renal replacement therapy in critically ill patients with acute kidney injury: a systematic review and meta-analysis. Crit Care. 2011;15:R72.CrossRefGoogle Scholar
  63. 63.
    Clec’h C, Darmon M, Lautrette A, Chemouni F, Azoulay E, Schwebel C, et al. Efficacy of renal replacement therapy in critically ill patients: a propensity analysis. Crit Care. 2012;16:R236.CrossRefGoogle Scholar
  64. 64.
    Bellomo R, Cass A, Cole L, Finfer S, Gallagher M, Lee J, et al. An observational study fluid balance and patient outcomes in the Randomized Evaluation of Normal vs Augmented Level of Replacement Therapy trial. Crit Care Med. 2012;40:1753–60.CrossRefGoogle Scholar
  65. 65.
    Uchino S, Bellomo R, Morimatsu H, Morgera S, Schetz M, Tan I, et al. Discontinuation of continuous renal replacement therapy: a post hoc analysis of a prospective multicenter observational study. Crit Care Med. 2009;37:2576–82.CrossRefGoogle Scholar
  66. 66.
    Schneider AG, Bellomo R, Bagshaw SM, Glassford NJ, Lo S, Jun M, et al. Choice of renal replacement therapy modality and dialysis dependence after acute kidney injury: a systematic review and meta-analysis. Intensive Care Med. 2013;39:987–97.CrossRefGoogle Scholar
  67. 67.
    Berbece AN, Richardson RM. Sustained low-efficiency dialysis in the ICU: cost, anticoagulation, and solute removal. Kidney Int. 2006;70:963–8.CrossRefGoogle Scholar
  68. 68.
    Kumar VA, Craig M, Depner TA, Yeun JY. Extended daily dialysis: a new approach to renal replacement for acute renal failure in the intensive care unit. Am J Kidney Dis. 2000;36:294–300.CrossRefGoogle Scholar
  69. 69.
    Wu VC, Wang CH, Wang WJ, Lin YF, Hu FC, Chen YW, et al. Sustained low-efficiency dialysis versus continuous veno-venous hemofiltration for postsurgical acute renal failure. Am J Surg. 2010;199:466–76.CrossRefGoogle Scholar
  70. 70.
    Schwenger V, Weigand MA, Hoffmann O, Dikow R, Kihm LP, Seckinger J, et al. Sustained low efficiency dialysis using a single-pass batch system in acute kidney injury-a randomized interventional trial: the REnal Replacement Therapy Study in Intensive Care Unit PatiEnts. Crit Care. 2012;16:R140.CrossRefGoogle Scholar
  71. 71.
    Legrand M, Darmon M, Joannidis M, Payen D. Management of renal replacement therapy in ICU patients: an international survey. Intensive Care Med. 2013;39:101–8.CrossRefGoogle Scholar
  72. 72.
    Bellomo R, Cass A, Cole L, Finfer S, Gallagher M, Lo S, et al. Intensity of continuous renal-replacement therapy in critically ill patients. N Engl J Med. 2009;361:1627–38.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Claudio Ronco
    • 1
  • Luca Di Lullo
    • 2
  1. 1.International Renal Research Institute, S.Bortolo HospitalVicenzaItaly
  2. 2.Department of Nephrology and DialysisL. Parodi-Delfino HospitalColleferroItaly

Personalised recommendations