Advertisement

Rare and Overlooked Causes of Acute Kidney Injury

  • José A. Morfín
  • Shruti Gupta
Chapter

Abstract

Entities like acute tubular injury and prerenal acute kidney injury (AKI) remain well-recognized causes of AKI; however, the spectrum of AKI is wide and encompasses often-overlooked causes of kidney injury. In this section, we describe seven causes of AKI that should be considered when evaluating a patient with new-onset AKI. These include cholemic nephropathy, anticoagulation-related nephropathy, oxalate nephropathy, drug-related crystalluria, abdominal compartment syndrome, cholesterol embolization, and drug-induced AKI. As with other causes of AKI, evaluation for these etiologies involves a thorough history and physical, along with attention to urinalysis and urine microscopy. In the setting of drug-induced AKI (particularly acyclovir nephrotoxicity) and oxalate nephropathy, characteristic crystals may be seen on urine sediment. While renal biopsy is often the “gold standard” in making the diagnosis, it is often contraindicated, as in anticoagulation-related nephropathy and cholemic nephropathy, where the risk of bleeding is high. In most of these conditions, it is critical to maintain a high index of suspicion; abdominal compartment syndrome, for instance, is potentially life-threatening if it goes untreated. These “rare” causes of AKI may be more common than previously thought; with the increasing prevalence of drugs of abuse, including opioids and synthetic cannabinoids, nephrologists will almost certainly encounter AKI directly attributable to drug use.

Keywords

Acute kidney injury Drugs of abuse Abdominal compartment syndrome Drug-induced crystalluria Atheroembolic disease Hyperoxaluria Bile acid nephropathy 

References

  1. 1.
    Haessler H, Rous P, Broun G. The renal elimination of bilirubin. J Exp Med. 1922;35:533–52.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Topuzlu C, WM S. Effect of bile infusion on the dog kidney. N Engl J Med. 1966;274:760–3.CrossRefPubMedGoogle Scholar
  3. 3.
    Wardle EN. Renal failure in obstructive jaundice—pathogenic factors. Postgrad Med J. 1975;51:512–4.  https://doi.org/10.1136/pgmj.51.598.512.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    van Slambrouck CM, Salem F, Meehan SM, Chang A. Bile cast nephropathy is a common pathologic finding for kidney injury associated with severe liver dysfunction. Kidney Int. 2013;84(1):192–7.  https://doi.org/10.1038/ki.2013.78.CrossRefPubMedGoogle Scholar
  5. 5.
    Bairaktari E, Liamis G, Tsolas O, Elisaf M. Partially reversible renal tubular damage in patients with obstructive jaundice. Hepatology. 2001;33(6):1365–9.  https://doi.org/10.1053/jhep.2001.25089.CrossRefPubMedGoogle Scholar
  6. 6.
    Sitprija V, Kashemsant U, Sriratanaban A, Arthachinta S, Poshyachinda V. Renal function in obstructive jaundice in man: cholangiocarcinoma model. Kidney Int. 1990;38(5):948–55.  https://doi.org/10.1038/ki.1990.296. CrossRefPubMedGoogle Scholar
  7. 7.
    Fickert P, Krones E, Pollheimer MJ, et al. Bile acids trigger cholemic nephropathy in common bile-duct-ligated mice. Hepatology. 2013;58(6):2056–69.  https://doi.org/10.1002/hep.26599.CrossRefPubMedGoogle Scholar
  8. 8.
    Alkhunaizi AM, ElTigani MA, Rabah RS, Nasr SH. Acute bile nephropathy secondary to anabolic steroids. Clin Nephrol. 2016;85(2):121–6.  https://doi.org/10.5414/CN108696.CrossRefPubMedGoogle Scholar
  9. 9.
    Tabatabaee SM, Elahi R, Savaj S. Bile cast nephropathy due to cholestatic jaundice after using stanozolol in 2 amateur bodybuilders. Iran J Kidney Dis. 2015;9(4):331–44.PubMedGoogle Scholar
  10. 10.
    Betjes MGH, Bajema I. The pathology of jaundice-related renal insufficiency: cholemic nephrosis revisited. J Nephrol. 2006;19(2):229–33.PubMedGoogle Scholar
  11. 11.
    Brodsky SV, Satoskar A, Chen J, et al. Acute kidney injury during warfarin therapy associated with obstructive tubular red blood cell casts: a report of 9 cases. Am J Kidney Dis. 2009;54(6):1121–6.  https://doi.org/10.1053/j.ajkd.2009.04.024.CrossRefPubMedGoogle Scholar
  12. 12.
    Ware K, Brodsky P, Satoskar AA, et al. Warfarin-related nephropathy modeled by nephron reduction and excessive anticoagulation. J Am Soc Nephrol. 2011;22(10):1856–62.  https://doi.org/10.1681/asn.2010101110.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Brodsky SV, Nadasdy T, Rovin BH, et al. Warfarin-related nephropathy occurs in patients with and without chronic kidney disease and is associated with an increased mortality rate. Kidney Int. 2011;80(2):181–9.  https://doi.org/10.1038/ki.2011.44.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Wheeler DS, Giugliano RP, Rangaswami J. Anticoagulation-related nephropathy. J Thromb Haemost. 2016;14(3):461–7.  https://doi.org/10.1111/jth.13229.CrossRefPubMedGoogle Scholar
  15. 15.
    Ryan M, Ware K, Qamri Z, et al. Warfarin-related nephropathy is the tip of the iceberg: direct thrombin inhibitor dabigatran induces glomerular hemorrhage with acute kidney injury in rats. Nephrol Dial Transplant. 2014;29(12):2228–34.  https://doi.org/10.1093/ndt/gft380.CrossRefPubMedGoogle Scholar
  16. 16.
    Shafi ST, Negrete H, Roy P, Julius CJ, Sarac E. A case of dabigatran-associated acute renal failure. WMJ. 2014;112:173–5; quiz 176.Google Scholar
  17. 17.
    Chang DN, Dager WE, Chin AI. Removal of dabigatran by hemodialysis. Am J Kidney Dis. 2013;61(3):487–9.  https://doi.org/10.1053/j.ajkd.2012.08.047.CrossRefPubMedGoogle Scholar
  18. 18.
    Diallo O, Janssens F, Hall M, Avni EF. Type 1 primary hyperoxaluria in pediatric patients: renal sonographic patterns. AJR Am J Roentgenol. 2004;183(6):1767–70.  https://doi.org/10.2214/ajr.183.6.01831767.CrossRefPubMedGoogle Scholar
  19. 19.
    Nasr SH, D’Agati VD, Said SM, et al. Oxalate nephropathy complicating Roux-en-Y Gastric bypass: an underrecognized cause of irreversible renal failure. Clin J Am Soc Nephrol. 2008;3(6):1676–83.  https://doi.org/10.2215/CJN.02940608.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Chen CL, Fang HC, Chou KJ, Wang JS, Chung HM. Acute oxalate nephropathy after ingestion of star fruit. Am J Kidney Dis. 2001;37(2):418–22.  https://doi.org/10.1053/ajkd.2001.21333.CrossRefPubMedGoogle Scholar
  21. 21.
    Sunkara V, Pelkowski TD, Dreyfus D, Satoskar A. Acute kidney disease due to excessive Vitamin C ingestion and remote roux-en-y gastric bypass surgery superimposed on CKD. Am J Kidney Dis. 2015;66(4):721–4.  https://doi.org/10.1053/j.ajkd.2015.06.021.CrossRefPubMedGoogle Scholar
  22. 22.
    Seyd F, Mena-Gutierrez A, Ghaffar U. A case of iced-tea nephropathy. N Engl J Med. 2015;372(14):1377–8.  https://doi.org/10.1056/NEJMc1500455.CrossRefGoogle Scholar
  23. 23.
    MA W, MM B, Gomes T, et al. Orlistat and acute kidney injury: an analysis of 953 patients. Arch Intern Med. 2011;171(7):702–10.  https://doi.org/10.1001/archinternmed.2011.103.CrossRefGoogle Scholar
  24. 24.
    Whitson JM, Stackhouse GB, Stoller ML. Hyperoxaluria after modern bariatric surgery: case series and literature review. Int Urol Nephrol. 2010;42(2):369–74.  https://doi.org/10.1007/s11255–009–9602–5.CrossRefPubMedGoogle Scholar
  25. 25.
    Hoppe B, Leumann E, von Unruh G, Laube N, Hesse A. Diagnostic and therapeutic approaches in patients with secondary hyperoxaluria. Front Biosci. 2003;8:e437–43. http://www.ncbi.nlm.nih.gov/pubmed/12957811.CrossRefPubMedGoogle Scholar
  26. 26.
    Escribano J, Balaguer A, Pagone F, Feliu A, Figuls MRI. Pharmacological interventions for preventing complications in idiopathic hypercalciuria. Cochrane Database Syst Rev. 2009;1:CD004754.  https://doi.org/10.1002/14651858.CD004754.pub2.CrossRefGoogle Scholar
  27. 27.
    Perazella MA. Crystal-induced acute renal failure. Am J Med. 1999;106(4):459–65.  https://doi.org/10.1016/S0002–9343(99)00041–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Brigden D, Rosling AE, Woods NC. Renal function after acyclovir intravenous injection. Am J Med. 1982;73(1 PART 1):182–5.  https://doi.org/10.1016/0002-9343(82)90087-0.CrossRefPubMedGoogle Scholar
  29. 29.
    Roberts D, Myles W, Smith B, et al. Acute kidney injury due to crystalluria following acute valacyclovir overdose. Kidney Int. 2011;79:574.CrossRefPubMedGoogle Scholar
  30. 30.
    Sawyer MH, Webb DE, Balow JE, Straus SE. Acyclovir-induced renal failure. Clinical course and histology. Am J Med. 1988;84(6):1067–71. http://www.ncbi.nlm.nih.gov/pubmed/3376977.CrossRefPubMedGoogle Scholar
  31. 31.
    Krieble B, Rudy D, Glick M, et al. Case report: acyclovir neurotoxicity and nephrotoxicity-the role for hemodialysis. Am J Med Sci. 1993;305(1):36.CrossRefPubMedGoogle Scholar
  32. 32.
    Berns JS, Cohen RM, Stumacher RJ, Rudnick MR. Renal aspects of therapy for human immunodeficiency virus and associated opportunistic infections. J Am Soc Nephrol. 1991;1(9):1061–80.PubMedGoogle Scholar
  33. 33.
    Carbone LG, Bendixen B, Appel GB. Sulfadiazine-associated obstructive nephropathy occurring in a patient with the acquired immunodeficiency syndrome. Am J Kidney Dis. 1988;12(1):72–5.  https://doi.org/10.1016/S0272–6386(88)80076–3.CrossRefPubMedGoogle Scholar
  34. 34.
    Simon DI, Brosius FC 3rd, Rothstein DM. Sulfadiazine crystalluria revisited. The treatment of Toxoplasma encephalitis in patients with acquired immunodeficiency syndrome. Arch Intern Med. 1990;150(11):2379–84. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2241449.CrossRefPubMedGoogle Scholar
  35. 35.
    Chopra N, Fine P, Price B, et al. Bilateral hydronephrosis from ciprofloxacin induced crystalluria and stone formation. J Urol. 2000;164:438.CrossRefPubMedGoogle Scholar
  36. 36.
    Sedlacek M, Suriawinata A, Schoolwerth A, et al. Ciprofloxacin crystal nephropathy—a “new” cause of acute renal failure. Nephrol Dial Transpl. 2006;21:2339.CrossRefGoogle Scholar
  37. 37.
    Montagnac R, Briat C, Schillinger F, Sartelet H, Birembaut P, Daudon M. Fluoroquinolone induced acute renal failure. General review about a case report with crystalluria due to ciprofloxacin. Nephrol Ther. 2005;1(1):44–51.  https://doi.org/10.1016/j.nephro.2005.02.005.CrossRefPubMedGoogle Scholar
  38. 38.
    Fogazzi GB, Garigali G, Brambilla C, Daudon M. Ciprofloxacin crystalluria. Nephrol Dial Transplant. 2006;21(10):2982–3.  https://doi.org/10.1093/ndt/gfl320.CrossRefPubMedGoogle Scholar
  39. 39.
    Stratta P, Lazzarich E, Canavese C, Bozzola C, Monga G. Ciprofloxacin crystal nephropathy. Am J Kidney Dis. 2007;50(2):330–5.  https://doi.org/10.1053/j.ajkd.2007.05.014.CrossRefPubMedGoogle Scholar
  40. 40.
    Abelson HT, Fosburg MT, Beardsley GP, et al. Methotrexate-induced renal impairment: clinical studies and rescue from systemic toxicity with high-dose leucovorin and thymidine. J Clin Oncol. 1983;1(3):208–16.CrossRefPubMedGoogle Scholar
  41. 41.
    Pitman SW, Frei E. Weekly methotrexate-calcium leucovorin rescue: effect of alkalinization on nephrotoxicity; pharmacokinetics in the CNS; and use in CNS non-Hodgkin’s lymphoma. Cancer Treat Rep. 1977;61(4):695–701.  https://doi.org/10.1017/CBO9781107415324.004.CrossRefPubMedGoogle Scholar
  42. 42.
    Widemann BC, Adamson PC. Understanding and managing methotrexate nephrotoxicity. Oncologist. 2006;11(6):694–703.  https://doi.org/10.1634/theoncologist.11–6-694.CrossRefGoogle Scholar
  43. 43.
    Garella S. Extracorporeal techniques in the treatment of exogenous intoxications. Kidney Int. 1988;33(3):735.CrossRefPubMedGoogle Scholar
  44. 44.
    Ray AS, Haikal A, Hammoud KA, Yu ASL. Vancomycin and the risk of AKI: a systematic review and meta-analysis. Clin J Am Soc Nephrol. 2016;11(12):2132–40.  https://doi.org/10.2215/CJN.05920616.CrossRefGoogle Scholar
  45. 45.
    Lodise TP, Lomaestro B, Graves J, Drusano GL. Larger vancomycin doses (at least four grams per day) are associated with an increased incidence of nephrotoxicity. Antimicrob Agents Chemother. 2008;52(4):1330–6.  https://doi.org/10.1128/AAC.01602–07.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Eisenberg ES, Robbins N, Lenci M. Vancomycin and interstitial nephritis. Ann Intern Med. 1981;95(5):658.CrossRefPubMedGoogle Scholar
  47. 47.
    Wai AO, Lo AMS, Abdo A, Marra F. Vancomycin-induced acute interstitial nephritis. Ann Pharmacother. 1998;32(11):1160–4. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L28543461.CrossRefPubMedGoogle Scholar
  48. 48.
    Luque Y, Louis K, Jouanneau C, et al. Vancomycin-associated cast nephropathy. J Am Soc Nephrol. 2017;28(6):1723–8.  https://doi.org/10.1681/ASN.2016080867.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Malbrain MLNG, Cheatham ML, Kirkpatrick A, et al. Results from the international conference of experts on intra-abdominal hypertension and abdominal compartment syndrome. I. Definitions. Intensive Care Med. 2006;32:1722–32.  https://doi.org/10.1007/s00134–006–0349–5.CrossRefGoogle Scholar
  50. 50.
    Regueira T, Hasbun P, Rebolledo R, et al. Intraabdominal hypertension in patients with septic shock. Am Surg. 2007;73(9):865–70.PubMedGoogle Scholar
  51. 51.
    Daugherty EL, Liang H, Taichman D, Hansen-Flaschen J, Fuchs BD. Abdominal compartment syndrome is common in medical intensive care unit patients receiving large-volume resuscitation. J Intensive Care Med. 2007;22(5):294–9.  https://doi.org/10.1177/0885066607305247.CrossRefGoogle Scholar
  52. 52.
    Wise R, Jacobs J, Pilate S, et al. Incidence and prognosis of intra-abdominal hypertension and abdominal compartment syndrome in severely burned patients: pilot study and review of the literature. Anestezjol Intens Ter. 2016;48(2):95–109.  https://doi.org/10.5603/AIT.a2015.0083.CrossRefGoogle Scholar
  53. 53.
    Maerz L, Kaplan LJ. Abdominal compartment syndrome. Crit Care Med. 2008;36(Suppl):S212–5.  https://doi.org/10.1097/CCM.0b013e318168e333.CrossRefPubMedGoogle Scholar
  54. 54.
    Malbrain MLNG, Chiumello D, Pelosi P, et al. Incidence and prognosis of intraabdominal hypertension in a mixed population of critically ill patients: a multiple-center epidemiological study*. Crit Care Med. 2005;33(2):315–22.  https://doi.org/10.1097/01.CCM.0000153408.09806.1B.CrossRefGoogle Scholar
  55. 55.
    Wendt E. Ueber den einfluss des intraabdominalenn druckes auf die absonderungsgeschwindigkeit des harnes. Arch Physiol Heilkd 1876;57(527).Google Scholar
  56. 56.
    Bradley SE, Bradley GP. The effect of increased intra-abdominal pressure on renal function in man. J Clin Invest. 1947;26(5):1010–22.  https://doi.org/10.1172/JCI101867.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Harman PK, Kron IL, McLachlan HD, Freedlender AE, Nolan SP. Elevated intra-abdominal pressure and renal function. Ann Surg. 1982;196(5):594–7.  https://doi.org/10.1097/00000658–198211000–00015.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Doty JM, Saggi BH, Sugerman HJ, et al. Effect of increased renal venous pressure on renal function. J Trauma. 1999;47(6):1000–3. http://www.ncbi.nlm.nih.gov/pubmed/10608524 CrossRefPubMedGoogle Scholar
  59. 59.
    Kirkpatrick AW, Brenneman FD, McLean RF, Rapanos T, Boulanger BR. Is clinical examination an accurate indicator of raised intra-abdominal pressure in critically injured patients? Can J Surg. 2000;43(3):207–11.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Malbrain MLNG. Different techniques to measure intra-abdominal pressure (IAP): time for a critical re-appraisal. Intensive Care Med. 2004;30(3):357–71.  https://doi.org/10.1007/s00134–003–2107–2.CrossRefGoogle Scholar
  61. 61.
    Strang SG, Van Lieshout EM, Van Waes OJ, Verhofstad MH. Prevalence and mortality of abdominal compartment syndrome in severely injured patients: a systematic review. J Trauma Acute Care Surg. 2016;81(3):585–92.  https://doi.org/10.1097/TA.0000000000001133.CrossRefPubMedGoogle Scholar
  62. 62.
    De Waele JJ, Hoste EAJ, Malbrain MLNG. Decompressive laparotomy for abdominal compartment syndrome—a critical analysis. Crit Care. 2006;10(2):1–9.  https://doi.org/10.1186/cc4870.CrossRefGoogle Scholar
  63. 63.
    Parra M, Al-Khayat H, Smith H, et al. Paracentesis for resuscitation-induced abdominal compartment syndrome. J Trauma. 2006;60:1119–21.CrossRefPubMedGoogle Scholar
  64. 64.
    Reckard JM, Chung MH, Varma MK, Zagorski SM. Management of intraabdominal hypertension by percutaneous catheter drainage. J Vasc Interv Radiol. 2005;16(7):1019–21.  https://doi.org/10.1097/01.RVI.0000157781.67279.72.CrossRefPubMedGoogle Scholar
  65. 65.
    Jones DB, Iannaccone PM. Atheromatous emboli in renal biopsies. An ultrastructural study. Am J Pathol. 1975;78(2):261–76. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1912470&tool=pmcentrez&rendertype=abstract.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Greenberg A, Bastacky SI, Iqbal A, Borochovitz D, Johnson JP. Focal segmental glomerulosclerosis associated with nephrotic syndrome in cholesterol atheroembolism: clinicopathological correlations. Am J Kidney Dis. 1997;29(3):334–44.  https://doi.org/10.1016/s0272–6386(97)90193–1.CrossRefPubMedGoogle Scholar
  67. 67.
    Preston RA, Stemmer CL, Materson BJ, Perez-Stable E, Pardo V. Renal biopsy in patients 65 years of age or older. An analysis of the results of 334 biopsies. J Am Geriatr Soc. 1990;38(6):669–74.CrossRefPubMedGoogle Scholar
  68. 68.
    Darsee JR. Cholesterol embolism: the great masquerader. South Med J. 1979;72(2):174–80. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=371003.CrossRefPubMedGoogle Scholar
  69. 69.
    Scolari F, Ravani P. Atheroembolic renal disease. Lancet. 2010;375(9726):1650–60.  https://doi.org/10.1016/S0140–6736(09)62073–0.CrossRefPubMedGoogle Scholar
  70. 70.
    Scolari F, Tardanico R, Zani R, et al. Cholesterol crystal embolism: a recognizable cause of renal disease. Am J Kidney Dis. 2000;36(6):1089–109.  https://doi.org/10.1053/ajkd.2000.19809.CrossRefPubMedGoogle Scholar
  71. 71.
    Scolari F, Ravani P, Pola A, et al. Predictors of renal and patient outcomes in atheroembolic renal disease: a prospective study. J Am Soc Nephrol. 2003;14(6):1584–90.  https://doi.org/10.1097/01.ASN.0000069220.60954.F1.CrossRefPubMedGoogle Scholar
  72. 72.
    Thadhani RI, Camargo CA Jr, Xavier RJ, Fang LS, Bazari H. Atheroembolic renal failure after invasive procedures. Natural history based on 52 histologically proven cases. Medicine (Baltimore). 1995;74(6):350–8. http://www.ncbi.nlm.nih.gov/pubmed/7500898 CrossRefGoogle Scholar
  73. 73.
    Falanga V, MJ F, WN K. THe cutaneous manifestations of cholesterol crystal embolization. Arch Dermatol. 1986;122(10):1194–8.  https://doi.org/10.1001/archderm.1986.01660220112024.CrossRefPubMedGoogle Scholar
  74. 74.
    Kasinath B, Corwin A, Bidwani S, et al. Eosinophilia in the diagnosis of atheroembolic disease. Am J Nephrol. 1987;7:173–7.CrossRefPubMedGoogle Scholar
  75. 75.
    Lusco MA, Najafian B, Alpers CE, Fogo AB. AJKD atlas of renal pathology: cholesterol emboli. Am J Kidney Dis. 2016;67(4):e23–4.  https://doi.org/10.1053/j.ajkd.2016.02.034.CrossRefPubMedGoogle Scholar
  76. 76.
    Modi K, Rao V. Atheroembolic renal disease. JASN. 2001;12(8):1781–7.PubMedGoogle Scholar
  77. 77.
    Koga J-I. Cholesterol embolization treated with corticosteroids: two case reports. Angiology. 2005;56(4):497–501.  https://doi.org/10.1177/000331970505600420.CrossRefPubMedGoogle Scholar
  78. 78.
    Matsumura T, Matsumoto A, Ohno M, et al. A case of cholesterol embolism confirmed by skin biopsy and successfully treated with statins and steroids. Am J Med Sci. 2006;331(5):280–3.  https://doi.org/10.1097/00000441-200605000-00010.CrossRefPubMedGoogle Scholar
  79. 79.
    Mann SJ, Sos TA. Treatment of atheroembolization with corticosteroids. Am J Hypertens. 2001;14(8 I):831–4.  https://doi.org/10.1016/S0895-7061(01)02183-5.CrossRefGoogle Scholar
  80. 80.
    Scolari F, Ravani P, Gaggi R, et al. The challenge of diagnosing atheroembolic renal disease: clinical features and prognostic factors. Circulation. 2007;116(3):298–304.  https://doi.org/10.1161/CIRCULATIONAHA.106.680991.CrossRefPubMedGoogle Scholar
  81. 81.
    Kazory A, Aiyer R. Synthetic marijuana and acute kidney injury: an unforeseen association. Clin Kidney J. 2013;6(3):330–3.  https://doi.org/10.1093/ckj/sft047.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Bhanushali GK, Jain G, Fatima H, Leisch LJ, Thornley-Brown D. AKI associated with synthetic cannabinoids: a case series. Clin J Am Soc Nephrol. 2013;8(4):523–6.  https://doi.org/10.2215/CJN.05690612.CrossRefPubMedGoogle Scholar
  83. 83.
    Report MW. Acute kidney injury associated with synthetic cannabinoid use—multiple states, 2012. MMWR Morb Mortal Wkly Rep. 2013;62(6):93–8.  https://doi.org/10.3109/15563650.2013.770870.CrossRefGoogle Scholar
  84. 84.
    Srisung W, Jamal F, Prabhakar S. Synthetic cannabinoids and acute kidney injury. Proc (Bayl Univ Med Cent). 2015;28(4):475–7.CrossRefGoogle Scholar
  85. 85.
    Barutta F, Corbelli A, Mastrocola R, et al. Cannabinoid receptor 1 blockade ameliorates albuminuria in experimental diabetic nephropathy. Diabetes. 2010;59(4):1046–54.  https://doi.org/10.2337/db09–1336.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Jenkin KA, McAinch AJ, Grinfeld E, Hryciw DH. Role for cannabinoid receptors in human proximal tubular hypertrophy. Cell Physiol Biochem. 2010;26:879–86.  https://doi.org/10.1159/000323997.CrossRefPubMedGoogle Scholar
  87. 87.
    Pendergraft WF, Herlitz LC, Thornley-Brown D, Rosner M, Niles JL. Nephrotoxic effects of common and emerging drugs of abuse. Clin J Am Soc Nephrol. 2014;9(11):1996–2005.  https://doi.org/10.2215/CJN.00360114.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Pomara C, Cassano T, D’Errico S, et al. Data available on the extent of cocaine use and dependence: biochemistry, pharmacologic effects and global burden of disease of cocaine abusers. Curr Med Chem. 2012;19(33):5647–57.  https://doi.org/10.2174/092986712803988811.CrossRefPubMedGoogle Scholar
  89. 89.
    Sáez CG, Olivares P, Pallavicini J, et al. Increased number of circulating endothelial cells and plasma markers of endothelial damage in chronic cocaine users. Thromb Res. 2011;128(4):e18–23.  https://doi.org/10.1016/j.thromres.2011.04.019.CrossRefPubMedGoogle Scholar
  90. 90.
    Barroso-Moguel R, Mendez-Armenta M, Villeda-Hernandez J. Experimental nephropathy by chronic administration of cocaine in rats. Toxicology. 1995;98(1–3):41–6.  https://doi.org/10.1016/0300–483X(94)02954-S.CrossRefPubMedGoogle Scholar
  91. 91.
    McGrath MM, Isakova T, Rennke HG, Mottola AM, Laliberte KA, Niles JL. Contaminated cocaine and antineutrophil cytoplasmic antibody-associated disease. Clin J Am Soc Nephrol. 2011;6(12):2799–805.  https://doi.org/10.2215/CJN.03440411.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Graf J, Lynch K, Yeh CL, et al. Purpura, cutaneous necrosis, and antineutrophil cytoplasmic antibodies associated with levamisole-adulterated cocaine. Arthritis Rheum. 2011;63(12):3998–4001.  https://doi.org/10.1002/art.30590.CrossRefPubMedGoogle Scholar
  93. 93.
    Akkina SK, Ricardo AC, Patel A, et al. Illicit drug use, hypertension, and chronic kidney disease in the US adult population. Transl Res. 2012;160(6):391–8.  https://doi.org/10.1016/j.trsl.2012.05.008.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Hall AP, Henry JA. Acute toxic effects of “Ecstasy” (MDMA) and related compounds: overview of pathophysiology and clinical management. Br J Anaesth. 2006;96(6):678–85.  https://doi.org/10.1093/bja/ael078.CrossRefPubMedGoogle Scholar
  95. 95.
    Rusyniak DE, Tandy SL, Hekmatyar SK, et al. The role of mitochondrial uncoupling in 3,4-methylenedioxymethamphetamine-mediated skeletal muscle hyperthermia and rhabdomyolysis. J Pharmacol Exp Ther. 2005;313(2):629–39.  https://doi.org/10.1124/jpet.104.079236.CrossRefPubMedGoogle Scholar
  96. 96.
    Steinkellner T, Freissmuth M, Sitte HH, Montgomery T. The ugly side of amphetamines: short-and long-term toxicity of 3,4-methylenedioxymethamphetamine (MDMA, “Ecstasy”), methamphetamine and d-amphetamine. Biol Chem. 2011;392(1–2):103–15.  https://doi.org/10.1515/BC.2011.016.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Campbell GA, Rosner MH. The agony of ecstasy: MDMA (3,4-methylenedioxymethamphetamine) and the kidney. Clin J Am Soc Nephrol. 2008;3(6):1852–60.  https://doi.org/10.2215/CJN.02080508.CrossRefPubMedGoogle Scholar
  98. 98.
    Florence CS, Zhou C, Luo F, Xu L. The economic burden of prescription opioid overdose, abuse, and dependence in the United States, 2013. Med Care. 2016;54(10):901–6.  https://doi.org/10.1097/MLR.0000000000000625.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Mallappallil M, Sabu J, Friedman EA, Salifu M. What do we know about opioids and the kidney? Int J Mol Sci. 2017;18(1).  https://doi.org/10.3390/ijms18010223.CrossRefPubMedCentralGoogle Scholar
  100. 100.
    do Sameiro Faria M, Sampaio S, Faria V, Carvalho E. Nephropathy associated with heroin abuse in Caucasian patients. Nephrol Dial Transplant. 2003;18(11):2308–13.  https://doi.org/10.1093/ndt/gfg369.CrossRefGoogle Scholar
  101. 101.
    Jaffe JA, Kimmel PL. Chronic nephropathies of cocaine and heroin abuse: a critical review. Clin J Am Soc Nephrol. 2006;1(4):655–67.  https://doi.org/10.2215/CJN.00300106.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Nephrology, Department of Internal MedicineUniversity of California Davis School of MedicineSacramentoUSA
  2. 2.Division of Renal Medicine, Department of MedicineBrigham and Women’s HospitalBostonUSA

Personalised recommendations