Core Concepts in Acute Kidney Injury pp 181-193 | Cite as
Acute Kidney Failure and Minimal Change Disease
Abstract
MCD represents 95% of all cases of childhood idiopathic nephrotic syndrome (INS) and 30% of INS in adults of all ages and is not exceptional after 60 years. Albuminuria and hypoalbuminemia are accompanied by massive edema without reduction of blood volume. Renal function is moderately altered in 1/3 of patients with MCD, as foot process fusion impairs filtration of small molecules. The GFR returns to normal with remission of proteinuria. Since the early 1960s, a number of publications reported cases of acute oliguric kidney insufficiency complicating the course of MCD in adults. AKI mostly affects older patients with massive proteinuria, severe hypoalbuminemia, a background of hypertension, and arterial/arteriolar lesions on kidney biopsy. Histology reveals ischemic tubular necrosis. AKI may require dialysis for several weeks or months until treatment-induced remission allows resolution of oliguria. In rare cases AKI does not recover. Factors causing AKI in patients with MCD are diuretic-induced hypovolemia, NSAIDs, iodinated contrast media, and nephrotoxic drugs. AKI is not frequent in children with MCD in the absence of intercurrent complications. Conversely when steroid-resistant nephrotic children are hospitalized for an acute episode of hypovolemia, sepsis, peritonitis, and exposure to nephrotoxic medications and/or ACE inhibitors, AKI complicates NS in about half of them. The main goal of supportive therapy is to buy time until corticosteroids obtain a remission of proteinuria. Persistent oliguria may require a long period of dialysis. Prevention is based on early detection and treatment of infection, limited use of diuretics, and avoidance of nephrotoxic agents.
Keywords
Minimal change nephrotic syndrome Kidney biopsy AKI Adults Children Edema Diuretics Nephrotoxic drugsNotes
Conflict of Interest Statement
The authors deny any conflict of interest with regard to this chapter.
References
- 1.Cameron JS. Nephrotic syndrome in the elderly. Semin Nephrol. 1996;16:319–29.PubMedGoogle Scholar
- 2.Haas M, Spargo BH, Wit EJ, Meehan SM. Etiologies and outcome of acute renal insufficiency in older adults: a renal biopsy study of 259 cases. Am J Kidney Dis. 2000;35:433–47.CrossRefPubMedGoogle Scholar
- 3.Moutzouris DA, Herlitz L, Appel GB, Markowitz GS, Freudenthal B, Radhakrishnan J, D’Agati VD. Renal biopsy in the very elderly. Clin J Am Soc Nephrol. 2009;4:1073–82.CrossRefPubMedPubMedCentralGoogle Scholar
- 4.Uezono S, Hara S, Sato Y, Komatsu H, Ikeda N, Shimao Y, Hayashi T, Asada Y, Fujimoto S, Eto T. Renal biopsy in elderly patients: a clinicopathological analysis. Ren Fail. 2006;28:549–55.CrossRefPubMedGoogle Scholar
- 5.Zech P, Colon S, Pointet P, Deteix P, Labeeuw M, Leitienne P. The nephrotic syndrome in adults aged over 60: etiology, evolution and treatment of 76 cases. Clin Nephrol. 1982;17:232–6.PubMedGoogle Scholar
- 6.Marino F, Martorano C, Tripepi R, Bellantoni M, Tripepi G, Mallamaci F, Zoccali C. Subclinical pulmonary congestion is prevalent in nephrotic syndrome. Kidney Int. 2016;89(2):421–8.CrossRefPubMedGoogle Scholar
- 7.Rostoker G, Behar A, Lagrue G. Vascular hyperpermeability in nephrotic edema. Nephron. 2000;85:194–200.CrossRefPubMedGoogle Scholar
- 8.Doucet A, Favre G, Deschenes G. Molecular mechanism of edema formation in nephrotic syndrome: therapeutic implications. Pediatr Nephrol. 2007;22:1983–90.CrossRefPubMedPubMedCentralGoogle Scholar
- 9.Bhave G, Neilson EG. Body fluid dynamics: back to the future. J Am Soc Nephrol. 2011;22:2166–81.CrossRefPubMedPubMedCentralGoogle Scholar
- 10.Vande Walle JG, Donckerwolcke RA. Pathogenesis of edema formation in the nephrotic syndrome. Pediatr Nephrol. 2001;16:283–93.CrossRefPubMedGoogle Scholar
- 11.Koomans HA, Kortlandt W, Geers AB, Dorhout Mees EJ. Lowered protein content of tissue fluid in patients with the nephrotic syndrome: observations during disease and recovery. Nephron. 1985;40:391–5.CrossRefPubMedGoogle Scholar
- 12.Koomans HA, Geers AB, Dorhout Mees EJ, Kortlandt W. Lowered tissue-fluid oncotic pressure protects the blood volume in the nephrotic syndrome. Nephron. 1986;42:317–22.CrossRefPubMedGoogle Scholar
- 13.Reimold EW, Marks JF. Hypovolemic shock complicating the nephrotic syndrome in children. J Pediatr. 1966;69:658–60.CrossRefPubMedGoogle Scholar
- 14.Theuns-Valks SD, van Wijk JA, van Heerde M, Dolman KM, Bokenkamp A. Abdominal pain and vomiting in a boy with nephrotic syndrome. Clin Pediatr (Phila). 2011;50:470–3.CrossRefGoogle Scholar
- 15.Van de Walle JG, Donckerwolcke RA, Greidanus TB, Joles JA, Koomans HA. Renal sodium handling in children with nephrotic relapse: relation to hypovolaemic symptoms. Nephrol Dial Transplant. 1996;11:2202–8.CrossRefPubMedGoogle Scholar
- 16.Wang SJ, Tsau YK, Lu FL, Chen CH. Hypovolemia and hypovolemic shock in children with nephrotic syndrome. Acta Paediatr Taiwan. 2000;41:179–83.PubMedGoogle Scholar
- 17.Dorhout Mees EJ. Does it make sense to administer albumin to the patient with nephrotic oedema? Nephrol Dial Transplant. 1996;11:1224–6.CrossRefPubMedGoogle Scholar
- 18.Dorhout Mees EJ, Koomans HA. Understanding the nephrotic syndrome: what’s new in a decade? Nephron. 1995;70:1–10.CrossRefPubMedGoogle Scholar
- 19.Eisenberg S. Blood volume in persons with the nephrotic syndrome. Am J Med Sci. 1968;255:320–6.CrossRefPubMedGoogle Scholar
- 20.Dorhout EJ, Roos JC, Boer P, Yoe OH, Simatupang TA. Observations on edema formation in the nephrotic syndrome in adults with minimal lesions. Am J Med. 1979;67:378–84.CrossRefPubMedGoogle Scholar
- 21.Dorhout Mees EJ, Geers AB, Koomans HA. Blood volume and sodium retention in the nephrotic syndrome: a controversial pathophysiological concept. Nephron. 1984;36:201–11.CrossRefPubMedGoogle Scholar
- 22.Fauchald P, Noddeland H, Norseth J. Interstitial fluid volume, plasma volume and colloid osmotic pressure in patients with nephrotic syndrome. Scand J Clin Lab Invest. 1984;44:661–7.CrossRefPubMedGoogle Scholar
- 23.Fauchald P, Noddeland H, Norseth J. An evaluation of ultrafiltration as treatment of diuretic-resistant oedema in nephrotic syndrome. Acta Med Scand. 1985;217:127–31.CrossRefPubMedGoogle Scholar
- 24.Geers AB, Koomans HA, Boer P, Dorhout Mees EJ. Plasma and blood volumes in patients with the nephrotic syndrome. Nephron. 1984;38:170–3.CrossRefPubMedGoogle Scholar
- 25.Geers AB, Koomans HA, Roos JC, Dorhout Mees EJ. Preservation of blood volume during edema removal in nephrotic subjects. Kidney Int. 1985;28:652–7.CrossRefPubMedGoogle Scholar
- 26.Koomans HA, Braam B, Geers AB, Roos JC, Dorhout Mees EJ. The importance of plasma protein for blood volume and blood pressure homeostasis. Kidney Int. 1986;30:730–5.CrossRefPubMedGoogle Scholar
- 27.Koomans HA, Geers AB, vd Meiracker AH, Roos JC, Boer P, Dorhout Mees EJ. Effects of plasma volume expansion on renal salt handling in patients with the nephrotic syndrome. Am J Nephrol. 1984;4:227–34.CrossRefPubMedGoogle Scholar
- 28.Meltzer JI, Keim HJ, Laragh JH, Sealey JE, Jan KM, Chien S. Nephrotic syndrome: vasoconstriction and hypervolemic types indicated by renin-sodium profiling. Ann Intern Med. 1979;91:688–96.CrossRefPubMedGoogle Scholar
- 29.Brown EA, Markandu N, Sagnella GA, Jones BE, MacGregor GA. Sodium retention in nephrotic syndrome is due to an intrarenal defect: evidence from steroid-induced remission. Nephron. 1985;39:290–5.CrossRefPubMedGoogle Scholar
- 30.Brown EA, Markandu ND, Roulston JE, Jones BE, Squires M, MacGregor GA. Is the renin-angiotensin-aldosterone system involved in the sodium retention in the nephrotic syndrome? Nephron. 1982;32:102–7.CrossRefPubMedGoogle Scholar
- 31.Brown EA, Markandu ND, Sagnella GA, Squires M, Jones BE, MacGregor GA. Evidence that some mechanism other than the renin system causes sodium retention in nephrotic syndrome. Lancet. 1982;2:1237–40.CrossRefPubMedGoogle Scholar
- 32.Fadnes HO, Pape JF, Sundsfjord JA. A study on oedema mechanism in nephrotic syndrome. Scand J Clin Lab Invest. 1986;46:533–8.CrossRefPubMedGoogle Scholar
- 33.Geers AB, Koomans HA, Roos JC, Boer P, Dorhout Mees EJ. Functional relationships in the nephrotic syndrome. Kidney Int. 1984;26:324–30.CrossRefPubMedGoogle Scholar
- 34.Hammond TG, Whitworth JA, Saines D, Thatcher R, Andrews J, Kincaid-Smith P. Renin-angiotensin-aldosterone system in nephrotic syndrome. Am J Kidney Dis. 1984;4:18–23.CrossRefPubMedGoogle Scholar
- 35.Shapiro MD, Nicholls KM, Groves BM, Schrier RW. Role of glomerular filtration rate in the impaired sodium and water excretion of patients with the nephrotic syndrome. Am J Kidney Dis. 1986;8:81–7.CrossRefPubMedGoogle Scholar
- 36.Usberti M, Federico S, Meccariello S, Cianciaruso B, Balletta M, Pecoraro C, Sacca L, Ungaro B, Pisanti N, Andreucci VE. Role of plasma vasopressin in the impairment of water excretion in nephrotic syndrome. Kidney Int. 1984;25:422–9.CrossRefPubMedGoogle Scholar
- 37.Ichikawa I, Rennke HG, Hoyer JR, Badr KF, Schor N, Troy JL, Lechene CP, Brenner BM. Role for intrarenal mechanisms in the impaired salt excretion of experimental nephrotic syndrome. J Clin Invest. 1983;71:91–103.CrossRefPubMedPubMedCentralGoogle Scholar
- 38.Deschenes G, Doucet A. Collecting duct (Na+/K+)-ATPase activity is correlated with urinary sodium excretion in rat nephrotic syndromes. J Am Soc Nephrol. 2000;11:604–15.PubMedGoogle Scholar
- 39.Feraille E, Vogt B, Rousselot M, Barlet-Bas C, Cheval L, Doucet A, Favre H. Mechanism of enhanced Na-K-ATPase activity in cortical collecting duct from rats with nephrotic syndrome. J Clin Invest. 1993;91:1295–300.CrossRefPubMedPubMedCentralGoogle Scholar
- 40.Kim SW, de Seigneux S, Sassen MC, Lee J, Kim J, Knepper MA, Frokiaer J, Nielsen S. Increased apical targeting of renal ENaC subunits and decreased expression of 11betaHSD2 in HgCl2-induced nephrotic syndrome in rats. Am J Physiol Renal Physiol. 2006;290:F674–87.CrossRefPubMedGoogle Scholar
- 41.Nephrotic syndrome in children: prediction of histopathology from clinical and laboratory characteristics at time of diagnosis. A report of the International Study of Kidney Disease in Children. Kidney Int. 1978;13:159–65.Google Scholar
- 42.Habib R, Kleinknecht C. The primary nephrotic syndrome of childhood. Classification and clinicopathologic study of 406 cases. Pathol Annu. 1971;6:417–74.PubMedGoogle Scholar
- 43.White RH, Glasgow EF, Mills RJ. Clinicopathological study of nephrotic syndrome in childhood. Lancet. 1970;1:1353–9.CrossRefPubMedGoogle Scholar
- 44.Bohlin AB. Clinical course and renal function in minimal change nephrotic syndrome. Acta Paediatr Scand. 1984;73:631–6.CrossRefPubMedGoogle Scholar
- 45.Hopper J Jr, Ryan P, Lee JC, Rosenau W. Lipoid nephrosis in 31 adult patients: renal biopsy study by light, electron, and fluorescence microscopy with experience in treatment. Medicine (Baltimore). 1970;49:321–41.CrossRefGoogle Scholar
- 46.Carrie BJ, Golbetz HV, Michaels AS, Myers BD. Creatinine: an inadequate filtration marker in glomerular diseases. Am J Med. 1980;69:177–82.CrossRefPubMedGoogle Scholar
- 47.Gur A, Adefuin PY, Siegel NJ, Hayslett JP. A study of the renal handling of water in lipoid nephrosis. Pediatr Res. 1976;10:197–201.CrossRefPubMedGoogle Scholar
- 48.Koomans HA, Boer WH, Dorhout Mees EJ. Renal function during recovery from minimal lesions nephrotic syndrome. Nephron. 1987;47:173–8.CrossRefPubMedGoogle Scholar
- 49.Nolasco F, Cameron JS, Heywood EF, Hicks J, Ogg C, Williams DG. Adult-onset minimal change nephrotic syndrome: a long-term follow-up. Kidney Int. 1986;29:1215–23.CrossRefPubMedGoogle Scholar
- 50.Lowenstein J, Schacht RG, Baldwin DS. Renal failure in minimal change nephrotic syndrome. Am J Med. 1981;70:227–33.CrossRefPubMedGoogle Scholar
- 51.Cameron MA, Peri U, Rogers TE, Moe OW. Minimal change disease with acute renal failure: a case against the nephrosarca hypothesis. Nephrol Dial Transplant. 2004;19:2642–6.CrossRefPubMedGoogle Scholar
- 52.Esparza AR, Kahn SI, Garella S, Abuelo JG. Spectrum of acute renal failure in nephrotic syndrome with minimal (or minor) glomerular lesions. Role of hemodynamic factors. Lab Investig. 1981;45:510–21.PubMedGoogle Scholar
- 53.Koomans HA. Pathophysiology of acute renal failure in idiopatic nephrotic syndrome. Nephrol Dial Transplant. 2001;16:221–4.CrossRefPubMedGoogle Scholar
- 54.Robson AM, Giangiacomo J, Kienstra RA, Naqvi ST, Ingelfinger JR. Normal glomerular permeability and its modification by minimal change nephrotic syndrmone. J Clin Invest. 1974;54:1190–9.CrossRefPubMedPubMedCentralGoogle Scholar
- 55.Bohman SO, Jaremko G, Bohlin AB, Berg U. Foot process fusion and glomerular filtration rate in minimal change nephrotic syndrome. Kidney Int. 1984;25:696–700.CrossRefPubMedGoogle Scholar
- 56.Drumond MC, Kristal B, Myers BD, Deen WM. Structural basis for reduced glomerular filtration capacity in nephrotic humans. J Clin Invest. 1994;94:1187–95.CrossRefPubMedPubMedCentralGoogle Scholar
- 57.Maas RJ, Deegens JK, Wetzels JF. Permeability factors in idiopathic nephrotic syndrome: historical perspectives and lessons for the future. Nephrol Dial Transplant. 2014;29:2207–16.CrossRefPubMedGoogle Scholar
- 58.Chamberlain MJ, Pringle A, Wrong OM. Oliguric renal failure in the nephrotic syndrome. Q J Med. 1966;35:215–35.PubMedGoogle Scholar
- 59.Conolly ME, Wrong OM, Jones NF. Reversible renal failure in idiopathic nephrotic syndrome with minimal glomerular changes. Lancet. 1968;1:665–8.CrossRefPubMedGoogle Scholar
- 60.Harats D, Friedlander M, Koplovic Y, Friedman G. Prolonged reversible acute renal failure in focal glomerulonephritis with severe nephrotic syndrome in an elderly patient. Klin Wochenschr. 1989;67:502–5.CrossRefPubMedGoogle Scholar
- 61.Holdsworth DR, Stephenson P, Dowling JP, Atkins RC. Reversible acute renal failure in the nephrotic syndrome with minimal glomerular pathology. Med J Aust. 1977;2:532–3.PubMedGoogle Scholar
- 62.Hulter HN, Bonner EL Jr. Lipoid nephrosis appearing as acute oliguric renal failure. Arch Intern Med. 1980;140:403–5.CrossRefPubMedGoogle Scholar
- 63.Imbasciati E, Ponticelli C, Case N, Altieri P, Bolasco F, Mihatsch MJ, Zollinger HU. Acute renal failure in idiopathic nephrotic syndrome. Nephron. 1981;28:186–91.CrossRefPubMedGoogle Scholar
- 64.Jennette JC, Falk RJ. Adult minimal change glomerulopathy with acute renal failure. Am J Kidney Dis. 1990;16:432–7.CrossRefPubMedPubMedCentralGoogle Scholar
- 65.Raij L, Keane WF, Leonard A, Shapiro FL. Irreversible acute renal failure in idiopathic nephrotic syndrome. Am J Med. 1976;61:207–14.CrossRefPubMedGoogle Scholar
- 66.Scully RE, Galdabini JJ, McNeely BU. Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 17–1978. N Engl J Med. 1978;298:1014–21.CrossRefPubMedGoogle Scholar
- 67.Searle M, Cooper C, Elliman J, Dathan R, Maciver A. Reversibility of acute renal failure in elderly patients with the nephrotic syndrome. Postgrad Med J. 1985;61:741–4.CrossRefPubMedPubMedCentralGoogle Scholar
- 68.Stephens VJ, Yates AP, Lechler RI, Baker LR. Reversible uraemia in normotensive nephrotic syndrome. Br Med J. 1979;2:705–6.CrossRefPubMedPubMedCentralGoogle Scholar
- 69.Smith JD, Hayslett JP. Reversible renal failure in the nephrotic syndrome. Am J Kidney Dis. 1992;19:201–13.CrossRefPubMedGoogle Scholar
- 70.Mak SK, Short CD, Mallick NP. Long-term outcome of adult-onset minimal-change nephropathy. Nephrol Dial Transplant. 1996;11:2192–201.CrossRefPubMedGoogle Scholar
- 71.Chen T, Lv Y, Lin F, Zhu J. Acute kidney injury in adult idiopathic nephrotic syndrome. Ren Fail. 2011;33:144–9.CrossRefPubMedGoogle Scholar
- 72.Waldman M, Crew RJ, Valeri A, Busch J, Stokes B, Markowitz G, D’Agati V, Appel G. Adult minimal-change disease: clinical characteristics, treatment, and outcomes. Clin J Am Soc Nephrol. 2007;2:445–53.CrossRefPubMedGoogle Scholar
- 73.Chen CL, Fang HC, Chou KJ, Lee JC, Lee PT, Chung HM, Wang JS. Increased endothelin 1 expression in adult-onset minimal change nephropathy with acute renal failure. Am J Kidney Dis. 2005;45:818–25.CrossRefPubMedGoogle Scholar
- 74.Kilis-Pstrusinska K, Zwolinska D, Musial K. [Acute renal failure in children with idiopathic nephrotic syndrome]. Pol Merkur Lekarski. 2000;8:462–4.Google Scholar
- 75.Rheault MN, Zhang L, Selewski DT, Kallash M, Tran CL, Seamon M, Katsoufis C, Ashoor I, Hernandez J, Supe-Markovina K, D’Alessandri-Silva C, DeJesus-Gonzalez N, Vasylyeva TL, Formeck C, Woll C, Gbadegesin R, Geier P, Devarajan P, Carpenter SL, Kerlin BA, Smoyer WE, Midwest Pediatric Nephrology C. AKI in children hospitalized with nephrotic syndrome. Clin J Am Soc Nephrol. 2015;10:2110.CrossRefPubMedPubMedCentralGoogle Scholar
- 76.Rheault MN, Wei CC, Hains DS, Wang W, Kerlin BA, Smoyer WE. Increasing frequency of acute kidney injury amongst children hospitalized with nephrotic syndrome. Pediatr Nephrol. 2014;29:139–47.CrossRefPubMedGoogle Scholar
- 77.Agarwal N, Phadke KD, Garg I, Alexander P. Acute renal failure in children with idiopathic nephrotic syndrome. Pediatr Nephrol. 2003;18:1289–92.CrossRefPubMedGoogle Scholar
- 78.Cavagnaro F, Lagomarsino E. Peritonitis as a risk factor of acute renal failure in nephrotic children. Pediatr Nephrol. 2000;15:248–51.CrossRefPubMedGoogle Scholar
- 79.Sakarcan A, Timmons C, Seikaly MG. Reversible idiopathic acute renal failure in children with primary nephrotic syndrome. J Pediatr. 1994;125:723–7.CrossRefPubMedGoogle Scholar
- 80.Vande Walle J, Mauel R, Raes A, Vandekerckhove K, Donckerwolcke R. ARF in children with minimal change nephrotic syndrome may be related to functional changes of the glomerular basal membrane. Am J Kidney Dis. 2004;43:399–404.CrossRefPubMedGoogle Scholar
- 81.Hill GS. Hypertensive nephrosclerosis. Curr Opin Nephrol Hypertens. 2008;17:266–70.CrossRefPubMedGoogle Scholar
- 82.Meyrier A. Nephrosclerosis: update on a centenarian. Nephrol Dial Transplant. 2014.Google Scholar
- 83.Meyrier A. Nephrosclerosis: a term in quest of a disease. Nephron. 2015;129:276–82.CrossRefPubMedGoogle Scholar
- 84.Textor SC. Atherosclerotic renal artery stenosis: flaws in estimated glomerular filtration rate and the problem of progressive kidney injury. Circ Cardiovasc Interv. 2011;4:213–5.CrossRefPubMedGoogle Scholar
- 85.Aspelin P, Aubry P, Fransson SG, Strasser R, Willenbrock R, Berg KJ, Nephrotoxicity in High-Risk Patients Study of Iso-Osmolar, Low-Osmolar Non-Ionic Contrast Media Study Investigators. Nephrotoxic effects in high-risk patients undergoing angiography. N Engl J Med. 2003;348:491–9.CrossRefGoogle Scholar
- 86.Glassock RJ. Secondary minimal change disease. Nephrol Dial Transplant. 2003;18 Suppl 6:vi52–8.PubMedGoogle Scholar
- 87.Brezin JH, Katz SM, Schwartz AB, Chinitz JL. Reversible renal failure and nephrotic syndrome associated with nonsteroidal anti-inflammatory drugs. N Engl J Med. 1979;301:1271–3.CrossRefPubMedGoogle Scholar
- 88.Curt GA, Kaldany A, Whitley LG, Crosson AW, Rolla A, Merino MJ, D’Elia JA. Reversible rapidly progressive renal failure with nephrotic syndrome due to fenoprofen calcium. Ann Intern Med. 1980;92:72–3.CrossRefPubMedGoogle Scholar
- 89.Feinfeld DA, Olesnicky L, Pirani CL, Appel GB. Nephrotic syndrome associated with use of the nonsteroidal anti-inflammatory drugs. Case report and review of the literature. Nephron. 1984;37:174–9.CrossRefPubMedGoogle Scholar
- 90.Kleinknecht C, Broyer M, Gubler MC, Palcoux JB. Irreversible renal failure after indomethacin in steroid-resistant nephrosis. N Engl J Med. 1980;302:691.PubMedGoogle Scholar
- 91.Kleinknecht D. Interstitial nephritis, the nephrotic syndrome, and chronic renal failure secondary to nonsteroidal anti-inflammatory drugs. Semin Nephrol. 1995;15:228–35.PubMedGoogle Scholar
- 92.Lomvardias S, Pinn VW, Wadhwa ML, Koshy KM, Heller M. Nephrotic syndrome associated with sulindac. N Engl J Med. 1981;304:424.PubMedGoogle Scholar
- 93.Morgenstern SJ, Bruns FJ, Fraley DS, Kirsch M, Borochovitz D. Ibuprofen-associated lipoid nephrosis without interstitial nephritis. Am J Kidney Dis. 1989;14:50–2.CrossRefPubMedGoogle Scholar
- 94.Clive DM, Stoff JS. Renal syndromes associated with nonsteroidal antiinflammatory drugs. N Engl J Med. 1984;310:563–72.CrossRefPubMedGoogle Scholar
- 95.Lafrance JP, Miller DR. Selective and non-selective non-steroidal anti-inflammatory drugs and the risk of acute kidney injury. Pharmacoepidemiol Drug Saf. 2009;18:923–31.CrossRefPubMedGoogle Scholar
- 96.Almansori M, Kovithavongs T, Qarni MU. Cyclooxygenase-2 inhibitor-associated minimal-change disease. Clin Nephrol. 2005;63:381–4.CrossRefPubMedGoogle Scholar
- 97.Chen YH, Tarng DC. Profound urinary protein loss and acute renal failure caused by cyclooxygenase-2 inhibitor. Chin J Physiol. 2011;54:264–8.CrossRefPubMedGoogle Scholar
- 98.Singhal R, Brimble KS. Thromboembolic complications in the nephrotic syndrome: pathophysiology and clinical management. Thromb Res. 2006;118:397–407.CrossRefPubMedGoogle Scholar
- 99.Llach F, Papper S, Massry SG. The clinical spectrum of renal vein thrombosis: acute and chronic. Am J Med. 1980;69:819–27.CrossRefPubMedGoogle Scholar
- 100.Luyckx VA, Naicker S. Acute kidney injury associated with the use of traditional medicines. Nat Clin Pract Nephrol. 2008;4:664–71.CrossRefPubMedGoogle Scholar