Advertisement

Motivic Integration

  • Antoine Chambert-Loir
  • Johannes Nicaise
  • Julien Sebag
Chapter
Part of the Progress in Mathematics book series (PM, volume 325)

Abstract

In this chapter we develop the theory of motivic integration on formal schemes \(\mathfrak{X}\) over a complete discrete valuation ring R, introduced by Sebag (2004a) and generalizing the constructions of Kontsevich (1995), Denef and Loeser (1999), and Looijenga (2002).

Bibliography

  1. R. Cluckers, F. Loeser (2008), Constructible motivic functions and motivic integration. Invent. Math. 173(1), 23–121MathSciNetCrossRefGoogle Scholar
  2. J. Denef, F. Loeser (1999), Germs of arcs on singular algebraic varieties and motivic integration. Invent. Math. 135(1), 201–232MathSciNetCrossRefGoogle Scholar
  3. M. Kontsevich (1995), Motivic integration. Lecture at Orsay. http://www.lama.univ-savoie.fr/~raibaut/Kontsevich-MotIntNotes.pdf
  4. E. Looijenga (2002), Motivic measures. Astérisque, 276, 267–297. Séminaire Bourbaki, vols. 1999/2000Google Scholar
  5. J. Oesterlé (1982), Réduction modulo pn des sous-ensembles analytiques fermés de Zp N. Invent. Math. 66(2), 325–341MathSciNetCrossRefGoogle Scholar
  6. J. Pas (1989), Uniform p-adic cell decomposition and local zeta functions. J. Reine Angew. Math. 399, 137–172MathSciNetzbMATHGoogle Scholar
  7. M. Presburger (1930), Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. Sprawozdanie z 1 Kongresu Matematyków Krajow Slowiańskich, pp. 92–101, 395, WarsawGoogle Scholar
  8. J. Sebag (2004a), Intégration motivique sur les schémas formels. Bull. Soc. Math. Fr. 132(1), 1–54CrossRefGoogle Scholar
  9. J. Sebag (2004b), Rationalité des séries de Poincaré et des fonctions zêta motiviques. Manuscripta Math. 115(2), 125–162MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Antoine Chambert-Loir
    • 1
  • Johannes Nicaise
    • 2
  • Julien Sebag
    • 3
  1. 1.Département de MathématiquesUniversité Paris-Sud OrsayOrsayFrance
  2. 2.Department of MathematicsUniversity of LeuvenHeverleeBelgium
  3. 3.Département de MathématiquesUniversité de Rennes 1RennesFrance

Personalised recommendations