Advertisement

Prologue: p-Adic Integration

  • Antoine Chambert-Loir
  • Johannes Nicaise
  • Julien Sebag
Chapter
Part of the Progress in Mathematics book series (PM, volume 325)

Abstract

Motivic integration and some of its applications take they very inspiration from results of p-adic integration, that is, integration on analytic manifolds over non-Archimedean locally compact fields.

Bibliography

  1. D. Abramovich, K. Karu, K. Matsuki, J. Włodarczyk (2002), Torification and factorization of birational maps. J. Am. Math. Soc. 15(3), 531–572MathSciNetCrossRefGoogle Scholar
  2. N. A’Campo (1975), La fonction zêta d’une monodromie. Comment. Math. Helv. 50, 233–248MathSciNetCrossRefGoogle Scholar
  3. E. Artal Bartolo, P. Cassou-Noguès, I. Luengo, A. Melle Hernández (2002a), The Denef–Loeser zeta function is not a topological invariant. J. Lond. Math. Soc. (2), 65, 45–54MathSciNetCrossRefGoogle Scholar
  4. E. Artal Bartolo, P. Cassou-Noguès, I. Luengo, A. Melle Hernéndez (2002b), Monodromy conjecture for some surface singularities. Ann. Sci. École Norm. Sup. (4) 35(4), 605–640Google Scholar
  5. E. Artal Bartolo, P. Cassou-Noguès, I. Luengo, A. Melle Hernéndez (2005), Quasi-ordinary power series and their zeta functions. Mem. Am. Math. Soc. 178(841), vi+85Google Scholar
  6. M.F. Atiyah (1970), Resolution of singularities and division of distributions. Commun. Pure Appl. Math. 23, 145–150MathSciNetCrossRefGoogle Scholar
  7. V.V. Batyrev (1999a), Birational Calabi-Yau n-folds have equal Betti numbers, in New Trends in Algebraic Geometry (Warwick, 1996). London Mathematical Society, Lecture Note Series, vol. 264 (Cambridge University Press, Cambridge), pp. 1–11Google Scholar
  8. J.N. Bernstein (1973), Analytic continuation of generalized functions with respect to a parameter. Funct. Anal. Appl. 6, 273–285CrossRefGoogle Scholar
  9. J.N. Bernstein, S.I. Gel’fand (1969), Meromorphy of the function Pλ. Funct. Anal. Appl. 3, 68–69MathSciNetCrossRefGoogle Scholar
  10. Z.I. Borevich, I.R. Shafarevich (1966), Number Theory (Academic, New York)zbMATHGoogle Scholar
  11. B. Bories, W. Veys (2016), Igusa’s p-adic local zeta function and the monodromy conjecture for non-degenerate surface singularities. Mem. Am. Math. Soc. 242(1145), vii+131Google Scholar
  12. S. Bosch, W. Lütkebohmert, M. Raynaud, Néron Models (1990), Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 21 (Springer, Berlin)Google Scholar
  13. N. Bourbaki (1963), Éléments de mathématique. Fascicule XXIX. Livre VI: Intégration. Chapitre 7: Mesure de Haar. Chapitre 8: Convolution et représentations. Actualités Scientifiques et Industrielles, No. 1306 (Hermann, Paris)Google Scholar
  14. N. Bourbaki (1985), Éléments de mathématique, Masson, Paris. Algèbre commutative. Chapitres 5 à 7. [Commutative algebra. Chapters 5–7]. ReprintGoogle Scholar
  15. N. Budur, M. Mustaţă, Z. Teitler (2011), The monodromy conjecture for hyperplane arrangements. Geom. Dedicata 153, 131–137MathSciNetCrossRefGoogle Scholar
  16. P. Deligne (1974a), La conjecture de Weil. I. Inst. Hautes Études Sci. Publ. Math., 43, 273–307MathSciNetCrossRefGoogle Scholar
  17. J. Denef (1984), The rationality of the Poincaré series associated to the p-adic points on a variety. Invent. Math. 77(1), 1–23MathSciNetCrossRefGoogle Scholar
  18. J. Denef (1987), On the degree of Igusa’s local zeta function. Am. J. Math. 109, 991–1008MathSciNetCrossRefGoogle Scholar
  19. J. Denef (1991), Report on Igusa’s Local Zeta Function. Séminaire Bourbaki, 1990/1991, 201–203 (Soc. Math., France), pp. 359–386Google Scholar
  20. J. Denef, F. Loeser (1992), Caractéristiques d’Euler-Poincaré, fonctions zêta locales et modifications analytiques. J. Am. Math. Soc. 5(4), 705–720zbMATHGoogle Scholar
  21. A. Dimca (1992), Singularities and Topology of Hypersurfaces. Universitext (Springer, New York)CrossRefGoogle Scholar
  22. B. Dwork (1960), On the rationality of the zeta function of an algebraic variety. Am. J. Math. 82, 631–648CrossRefGoogle Scholar
  23. G. Faltings (1988), p-adic Hodge theory. J. Am. Math. Soc. 1(1), 255–299MathSciNetzbMATHGoogle Scholar
  24. J.-M. Fontaine, W. Messing (1985/1987), p-adic Periods and p-Adic étale Cohomology. Contemporary Mathematics, vol. 67 (American Mathematical Society, Arcata), pp. 179–207Google Scholar
  25. A. Grothendieck (1965), Formule de Lefschetz et rationalité des fonctions L, Séminaire Bourbaki, Volume 9, Année 1964–1965 (Société Mathématique de France, Paris). Reprint 1995Google Scholar
  26. A. Grothendieck, J. Dieudonné (1961a), Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes. Publ. Math. Inst. Hautes Études Sci. 8, 5–222. Quoted as (ÉGA II)Google Scholar
  27. A. Grothendieck (1972–1973), Cohomologie ℓ-adique et fonctions L. Lecture Notes in Mathematics, vol. 589 (Springer, Berlin). Quoted as (SGA V)Google Scholar
  28. A. Grothendieck, M. Artin, J.-L. Verdier (1972–1973a), Théorie des topos et cohomologie étale des schémas. Lecture Notes in Mathematics, vols. 269–270–305 (Springer, Berlin). Quoted as (SGA IV)Google Scholar
  29. T. Hausel, F. Rodriguez-Villegas (2008), Mixed Hodge polynomials of character varieties. Invent. Math. 174(3), 555–624. With an appendix by Nicholas M. KatzMathSciNetCrossRefGoogle Scholar
  30. H. Hironaka (1964), Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II. Ann. Math. (2) 79, 109–203, 205–326CrossRefGoogle Scholar
  31. J.-I. Igusa (1975), Complex powers and asymptotic expansions. II. Asymptotic expansions. J. Reine Angew. Math. 278/279, 307–321Google Scholar
  32. J.-I. Igusa (1978), Forms of Higher Degree, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 59 (Tata Institute of Fundamental Research, Bombay)Google Scholar
  33. J.-I. Igusa (1989), b-functions and p-adic integrals, in Algebraic Analysis. Papers Dedicated to Professor Mikio Sato on the Occasion of His Sixtieth Birthday, vol. 1 (Academic, New York), pp. 231–241CrossRefGoogle Scholar
  34. J.-I. Igusa (2000), An Introduction to the Theory of Local Zeta Functions. AMS/IP Studies in Advanced Mathematics, vol. 14 (American Mathematical Society, Providence)Google Scholar
  35. T. Ito (2003), Birational smooth minimal models have equal Hodge numbers in all dimensions, Calabi-Yau varieties and mirror symmetry (Toronto, ON, 2001). Fields Institute Communication, vol. 38 (American Mathematical Society, Providence), pp. 183–194Google Scholar
  36. M. Kashiwara (1976/1977), B-functions and holonomic systems. Rationality of roots of B-functions. Invent. Math. 38(1), 33–53MathSciNetCrossRefGoogle Scholar
  37. N.M. Katz (1972–1973), Le niveau de la cohomologie des intersections complètes, in Groupes de monodromie en géométrie algébrique, I — SGA VII1, ed. by A. Grothendieck, P. Deligne, N.M. Katz. Lecture Notes in Mathematics, vol. 288 (Springer, Berlin), pp. 363–399. Quoted as ((alias?))Google Scholar
  38. S. Kawaguchi, J.H. Silverman (2009), Nonarchimedean Green functions and dynamics on projective space. Math. Z. 262(1), 173–197MathSciNetCrossRefGoogle Scholar
  39. T. Kimura (1982), The b-functions and holonomy diagrams of irreducible regular prehomogeneous vector spaces. Nagoya Math. J. 85, 1–80MathSciNetCrossRefGoogle Scholar
  40. T. Kimura (2003), Introduction to Prehomogeneous Vector Spaces. Translations of Mathematical Monographs, vol. 215 (American Mathematical Society, Providence). Translated from the 1998 Japanese original by Makoto Nagura and Tsuyoshi Niitani and revised by the authorGoogle Scholar
  41. T. Kimura, F. Satō, X.-W. Zhu (1990), On the poles of p-adic complex powers and the b-functions of prehomogeneous vector spaces. Am. J. Math. 112(3), 423–437MathSciNetCrossRefGoogle Scholar
  42. D.T. Lê (1977), Some remarks on relative monodromy, in Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976) (Sijthoff and Noordhoff, Alphen aan den Rijn), pp. 397–403Google Scholar
  43. A. Lemahieu, L. Van Proeyen (2011), Monodromy conjecture for nondegenerate surface singularities. Trans. Am. Math. Soc. 363(9), 4801–4829MathSciNetCrossRefGoogle Scholar
  44. F. Loeser (1988), Fonctions d’Igusa p-adiques et polynômes de Bernstein. Am. J. Math. 110(1), 1–21CrossRefGoogle Scholar
  45. F. Loeser (1990), Fonctions d’Igusa p-adiques, polynômes de Bernstein, et polyèdres de Newton. J. Reine Angew. Math. 412, 75–96MathSciNetzbMATHGoogle Scholar
  46. F. Loeser, J. Sebag (2003), Motivic integration on smooth rigid varieties and invariants of degenerations. Duke Math. J. 119(2), 315–344MathSciNetCrossRefGoogle Scholar
  47. A. MacIntyre (1976), On definable subsets of p-adic fields. J. Symb. Log. 41(3), 605–610MathSciNetCrossRefGoogle Scholar
  48. B. Malgrange (1974/1975), Intégrales asymptotiques et monodromie. Ann. Sci. École Norm. Sup. (4) 7, 405–430MathSciNetCrossRefGoogle Scholar
  49. D. Meuser (1981), On the rationality of certain generating functions. Math. Ann. 256(3), 303–310MathSciNetCrossRefGoogle Scholar
  50. J. Milnor (1968), Singular points of complex hypersurfaces, Annals of Mathematics Studies, vol. 61 (Princeton University Press, Princeton)Google Scholar
  51. J. Nicaise (2011b), A trace formula for varieties over a discretely valued field. J. Reine Angew. Math. 650, 193–238MathSciNetzbMATHGoogle Scholar
  52. J. Oesterlé (1983), Image modulo pn of a closed analytic subset of \(\mathbb{Z}_{p}^{N}\). (Image modulo pn d’un sous-ensemble analytique fermé de \(\mathbb{Z}_{p}^{N}\).). Théorie des Nombres, Sémin. Delange-Pisot-Poitou, Paris 1981/1982, Prog. Math. 38, 219–224Google Scholar
  53. B. Rodrigues (2004), On the monodromy conjecture for curves on normal surfaces. Math. Proc. Camb. Philos. Soc. 136(2), 313–324MathSciNetCrossRefGoogle Scholar
  54. B. Rodrigues, W. Veys (2001), Holomorphy of Igusa’s and topological zeta functions for homogeneous polynomials. Pac. J. Math. 201(2), 429–440MathSciNetCrossRefGoogle Scholar
  55. B. Rodrigues, W. Veys (2003), Poles of zeta functions on normal surfaces. Proc. Lond. Math. Soc. (3) 87(1), 164–196MathSciNetCrossRefGoogle Scholar
  56. M. Sato, T. Kimura (1977), A classification of irreducible prehomogeneous vector spaces and their relative invariants. Nagoya Math. J. 65, 1–155MathSciNetCrossRefGoogle Scholar
  57. J.-P. Serre (1965), Classification des variétés analytiques p-adiques compactes. Topology 3, 409–412MathSciNetCrossRefGoogle Scholar
  58. W. Veys (1993), Poles of Igusa’s local zeta function and monodromy. Bull. Soc. Math. Fr. 121, 545–598MathSciNetCrossRefGoogle Scholar
  59. W. Veys (2006), Vanishing of principal value integrals on surfaces. J. Reine Angew. Math. 598, 139–158MathSciNetzbMATHGoogle Scholar
  60. C.-L. Wang (2002), Cohomology theory in birational geometry. J. Differ. Geom. 60(2), 345–354MathSciNetCrossRefGoogle Scholar
  61. A. Weil (1982), Adeles and Algebraic Groups. Progress in Mathematics, vol. 23 (Birkhäuser, Boston)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Antoine Chambert-Loir
    • 1
  • Johannes Nicaise
    • 2
  • Julien Sebag
    • 3
  1. 1.Département de MathématiquesUniversité Paris-Sud OrsayOrsayFrance
  2. 2.Department of MathematicsUniversity of LeuvenHeverleeBelgium
  3. 3.Département de MathématiquesUniversité de Rennes 1RennesFrance

Personalised recommendations