Advertisement

Bardet-Biedl Syndrome

  • Yangfan P. Liu
  • Nicholas KatsanisEmail author
Chapter

Abstract

Bardet-Biedl syndrome (BBS) is a human genetic disorder characterized by defects in multiple organ systems. Major symptoms of BBS include retinitis pigmentosa, obesity, polydactyly, mental retardation, genital abnormalities, and renal abnormalities. Although generally inherited in an autosomal recessive fashion, reports of intrafamilial and interfamilial variability of penetrance and expressivity in patients with BBS have suggested models of oligogenic inheritance. To date, 17 causal genes have been identified, with an increasing number of modifying loci reported. Investigations into the function and subcellular localization of the protein products of BBS genes in physiologically relevant cell and animal models suggest that the primary organellar defect in BBS is the dysfunction of the cilium, a structure that projects from the surface of most vertebrate cells. Given the diverse role of the cilium in development and homeostasis, most clinical manifestations in BBS patients can be attributed to perturbed ciliary function.

Keywords

Multisystemic symptoms Autosomal recessive Oligogenic Ciliopathies Signaling pathways 

Notes

Acknowledgments

We thank Edwin Oh for critical reading and editorship of this chapter. This work was supported by a grant from the National Institute of Child Health and Human Development (HD042601) and grants from the National Institute of Diabetes and Digestive and Kidney Disorders (DK072301 and DK075972). NK is a distinguished Brumley Professor.

References

  1. 1.
    Klein D, Ammann F. The syndrome of Laurence-Moon-Bardet-Biedl and allied diseases in Switzerland. Clinical, genetic and epidemiological studies. J Neurol Sci. 1969;9(3):479–513.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Beales PL, et al. Bardet-Biedl syndrome: a molecular and phenotypic study of 18 families. J Med Genet. 1997;34(2):92–8.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Farag TI, Teebi AS. Bardet-Biedl and Laurence-Moon syndromes in a mixed Arab population. Clin Genet. 1988;33(2):78–82.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Farag TI, Teebi AS. High incidence of Bardet Biedl syndrome among the Bedouin. Clin Genet. 1989;36(6):463–4.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Green JS, et al. The cardinal manifestations of Bardet-Biedl syndrome, a form of Laurence-Moon-Biedl syndrome. N Engl J Med. 1989;321(15):1002–9.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Bardet G. Sur un syndrome d’obesite infantile avec polydactylie et retinite pigmentaire (contribution a l’etude des formes cliniques de l’obesite hypophysaire). Paris: Universite de Paris; 1920.Google Scholar
  7. 7.
    Biedl A. Ein Geschwisterpaar mit adiposo-genitaler Dystrophie. Dtsch Med Wschr. 1922;48:1630.Google Scholar
  8. 8.
    Katsanis N, et al. Triallelic inheritance in Bardet-Biedl syndrome, a Mendelian recessive disorder. Science. 2001;293(5538):2256–9.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Katsanis N, et al. BBS4 is a minor contributor to Bardet-Biedl syndrome and may also participate in triallelic inheritance. Am J Hum Genet. 2002;71(1):22–9.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Badano JL, et al. Heterozygous mutations in BBS1, BBS2 and BBS6 have a potential epistatic effect on Bardet-Biedl patients with two mutations at a second BBS locus. Hum Mol Genet. 2003;12(14):1651–9.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Beales PL, et al. Genetic interaction of BBS1 mutations with alleles at other BBS loci can result in non-Mendelian Bardet-Biedl syndrome. Am J Hum Genet. 2003;72(5):1187–99.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Badano JL, et al. The ciliopathies: an emerging class of human genetic disorders. Annu Rev Genomics Hum Genet. 2006;7(author):125–48.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Beales PL, et al. New criteria for improved diagnosis of Bardet-Biedl syndrome: results of a population survey. J Med Genet. 1999;36(6):437–46.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Al-Adsani A, Gader FA. Combined occurrence of diabetes mellitus and retinitis pigmentosa. Ann Saudi Med. 2010;30(1):70–5.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Pasinska M, et al. Prenatal and postnatal diagnostics of a child with Bardet-Biedl syndrome: case study. J Mol Genet Med. 2015;9(4):189.CrossRefGoogle Scholar
  16. 16.
    Chakravarti HN, et al. Bardet–Biedl syndrome in two siblings: a rare entity revisited. QJM. 2016;109(2):123–4.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Karmous-Benailly H, et al. Antenatal presentation of Bardet-Biedl syndrome may mimic Meckel syndrome. Am J Hum Genet. 2005;76(3):493–504.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Baker K, et al. Neocortical and hippocampal volume loss in a human ciliopathy: a quantitative MRI study in Bardet-Biedl syndrome. Am J Med Genet A. 2011;155A(1):1–8.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Beales PL, P.P.a.K.N. The Bardet-Biedl and Alstrom syndromes. In: Flinter F, Maher ER, Saggar-Malik A, editors. Genetics of renal disease. London: Oxford University Press; 2004. p. 361–98.Google Scholar
  20. 20.
    Heon E, et al. Ocular phenotypes of three genetic variants of Bardet-Biedl syndrome. Am J Med Genet A. 2005;132A(3):283–7.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Azari AA, et al. Retinal disease expression in Bardet-Biedl syndrome-1 (BBS1) is a spectrum from maculopathy to retina-wide degeneration. Invest Ophthalmol Vis Sci. 2006;47(11):5004–10.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Moore SJ, et al. Clinical and genetic epidemiology of Bardet-Biedl syndrome in Newfoundland: a 22-year prospective, population-based, cohort study. Am J Med Genet A. 2005;132(4):352–60.CrossRefGoogle Scholar
  23. 23.
    Ramirez N, et al. Orthopaedic manifestations of Bardet-Biedl syndrome. J Pediatr Orthop. 2004;24(1):92–6.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Barnett S, et al. Behavioural phenotype of Bardet-Biedl syndrome. J Med Genet. 2002;39(12):e76.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Mehrotra N, Taub S, Covert RF. Hydrometrocolpos as a neonatal manifestation of the Bardet-Biedl syndrome. Am J Med Genet. 1997;69(2):220.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Uguralp S, et al. Bardet-Biedl syndrome associated with vaginal atresia: a case report. Turk J Pediatr. 2003;45(3):273–5.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Stoler JM, Herrin JT, Holmes LB. Genital abnormalities in females with Bardet-Biedl syndrome. Am J Med Genet. 1995;55(3):276–8.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Friedman NJ, Kaiser PK. Essentials of ophthalmology. Philadelphia: Saunders Elsevier; 2007.Google Scholar
  29. 29.
    Parfrey PS, Davidson WS, Green JS. Clinical and genetic epidemiology of inherited renal disease in Newfoundland. Kidney Int. 2002;61(6):1925–34.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    O’Dea D, et al. The importance of renal impairment in the natural history of Bardet-Biedl syndrome. Am J Kidney Dis. 1996;27(6):776–83.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Tobin JL, et al. Inhibition of neural crest migration underlies craniofacial dysmorphology and Hirschsprung’s disease in Bardet-Biedl syndrome. Proc Natl Acad Sci U S A. 2008;105(18):6714–9.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Lorda-Sanchez I, et al. Does Bardet-Biedl syndrome have a characteristic face? J Med Genet. 2001;38(5):E14.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Rooryck C, et al. Bardet-biedl syndrome and brain abnormalities. Neuropediatrics. 2007;38(1):5–9.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Cherian MP, Al-Sanna’a NA. Clinical spectrum of Bardet-Biedl syndrome among four Saudi Arabian families. Clin Dysmorphol. 2009;18(4):188–94.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Lorda-Sanchez I, Ayuso C, Ibanez A. Situs inversus and hirschsprung disease: two uncommon manifestations in Bardet-Biedl syndrome. Am J Med Genet. 2000;90(1):80–1.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Elbedour K, et al. Cardiac abnormalities in the Bardet-Biedl syndrome: echocardiographic studies of 22 patients. Am J Med Genet. 1994;52(2):164–9.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Pagon RA, et al. Hepatic involvement in the Bardet-Biedl syndrome. Am J Med Genet. 1982;13(4):373–81.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Cramer B, et al. Sonographic and urographic correlation in Bardet-Biedl syndrome (formerly Laurence-Moon-Biedl syndrome). Urol Radiol. 1988;10(4):176–80.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Kulaga HM, et al. Loss of BBS proteins causes anosmia in humans and defects in olfactory cilia structure and function in the mouse. Nat Genet. 2004;36(9):994–8.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Iannaccone A, et al. Clinical evidence of decreased olfaction in Bardet-Biedl syndrome caused by a deletion in the BBS4 gene. Am J Med Genet A. 2005;132(4):343–6.CrossRefGoogle Scholar
  41. 41.
    Ross AJ, et al. Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates. Nat Genet. 2005;37.(author(10):1135–40.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Deffert C, et al. Recurrent insertional polydactyly and situs inversus in a Bardet-Biedl syndrome family. Am J Med Genet A. 2007;143(2):208–13.CrossRefGoogle Scholar
  43. 43.
    Schachat AP, Maumenee IH. Bardet-Biedl syndrome and related disorders. Arch Ophthalmol. 1982;100(2):285–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Forsythe E, Beales PL Bardet-Biedl syndrome. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, et al., editors. GeneReviews. Seattle: University of Washington; 2017.Google Scholar
  45. 45.
    Schuster SC. Next-generation sequencing transforms today’s biology. Nat Methods. 2008;5(1):16–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Medvedev P, Stanciu M, Brudno M. Computational methods for discovering structural variation with next-generation sequencing. Nat Methods. 2009;6(11 Suppl):S13–20.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Redin C, et al. Targeted high-throughput sequencing for diagnosis of genetically heterogeneous diseases: efficient mutation detection in Bardet-Biedl and Alstrom syndromes. J Med Genet. 2012;49(8):502–12.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Shah AS, et al. Loss of Bardet-Biedl syndrome proteins alters the morphology and function of motile cilia in airway epithelia. Proc Natl Acad Sci U S A. 2008;105(9):3380–5.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Tan PL, et al. Loss of Bardet Biedl syndrome proteins causes defects in peripheral sensory innervation and function. Proc Natl Acad Sci U S A. 2007;104(44):17524–9.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Ishizuka K, et al. DISC1-dependent switch from progenitor proliferation to migration in the developing cortex. Nature. 2011;473(7345):92–6.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Nishimura DY, et al. Bbs2-null mice have neurosensory deficits, a defect in social dominance, and retinopathy associated with mislocalization of rhodopsin. Proc Natl Acad Sci U S A. 2004;101(47):16588–93.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Rahmouni K, et al. Leptin resistance contributes to obesity and hypertension in mouse models of Bardet-Biedl syndrome. J Clin Invest. 2008;118(4):1458–67.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Kaushik AP, et al. Cartilage abnormalities associated with defects of chondrocytic primary cilia in Bardet-Biedl syndrome mutant mice. J Orthop Res. 2009;27(8):1093–9.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Beyer AM, et al. Contrasting vascular effects caused by loss of Bardet-Biedl syndrome genes. Am J Physiol Heart Circ Physiol. 2010;299(6):H1902–7.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Guo DF, et al. Inactivation of Bardet-Biedl syndrome genes causes kidney defects. Am J Physiol Ren Physiol. 2011;300(2):F574–80.CrossRefGoogle Scholar
  56. 56.
    Schrick JJ, et al. ADP-ribosylation factor-like 3 is involved in kidney and photoreceptor development. Am J Pathol. 2006;168(4):1288–98.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Zhang Q, et al. Bardet-Biedl syndrome 3 (Bbs3) knockout mouse model reveals common BBS-associated phenotypes and Bbs3 unique phenotypes. Proc Natl Acad Sci U S A. 2011;108(51):20678–83.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Mykytyn K, et al. Bardet-Biedl syndrome type 4 (BBS4)-null mice implicate Bbs4 in flagella formation but not global cilia assembly. Proc Natl Acad Sci U S A. 2004;101(23):8664–9.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Eichers ER, et al. Phenotypic characterization of Bbs4 null mice reveals age-dependent penetrance and variable expressivity. Hum Genet. 2006;120(2):211–26.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Abd-El-Barr MM, et al. Impaired photoreceptor protein transport and synaptic transmission in a mouse model of Bardet-Biedl syndrome. Vis Res. 2007;47(27):3394–407.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Tadenev AL, et al. Loss of Bardet-Biedl syndrome protein-8 (BBS8) perturbs olfactory function, protein localization, and axon targeting. Proc Natl Acad Sci U S A. 2011;108(25):10320–5.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Kudryashova E, et al. Deficiency of the E3 ubiquitin ligase TRIM32 in mice leads to a myopathy with a neurogenic component. Hum Mol Genet. 2009;18(7):1353–67.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Weatherbee SD, Niswander LA, Anderson KV. A mouse model for Meckel syndrome reveals Mks1 is required for ciliogenesis and Hedgehog signaling. Hum Mol Genet. 2009;18(23):4565–75.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Lancaster MA, et al. Defective Wnt-dependent cerebellar midline fusion in a mouse model of Joubert syndrome. Nat Med. 2011;17(6):726–31.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Zaghloul NA, Katsanis N. Mechanistic insights into Bardet-Biedl syndrome, a model ciliopathy. J Clin Invest. 2009;119(3):428–37.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Chiang AP, et al. Homozygosity mapping with SNP arrays identifies TRIM32, an E3 ubiquitin ligase, as a Bardet-Biedl syndrome gene (BBS11). Proc Natl Acad Sci U S A. 2006;103(16):6287–92.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Kim SK, et al. Planar cell polarity acts through septins to control collective cell movement and ciliogenesis. Science. 2010;329(5997):1337–40.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Schaefer E, et al. Mutations in SDCCAG8/NPHP10 cause Bardet-Biedl syndrome and are associated with penetrant renal disease and absent polydactyly. Mol Syndromol. 2011;1(6):273–81.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Katsanis N, et al. Mutations in MKKS cause obesity, retinal dystrophy and renal malformations associated with Bardet-Biedl syndrome. Nat Genet. 2000;26(1):67–70.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Stone DL, et al. Genetic and physical mapping of the McKusick-Kaufman syndrome. Hum Mol Genet. 1998;7(3):475–81.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Leppert M, et al. Bardet-Biedl syndrome is linked to DNA markers on chromosome 11q and is genetically heterogeneous. Nat Genet. 1994;7(1):108–12.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Katsanis N, et al. Delineation of the critical interval of Bardet-Biedl syndrome 1 (BBS1) to a small region of 11q13, through linkage and haplotype analysis of 91 pedigrees. Am J Hum Genet. 1999;65(6):1672–9.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Young TL, et al. A founder effect in the newfoundland population reduces the Bardet-Biedl syndrome I (BBS1) interval to 1 cM. Am J Hum Genet. 1999;65(6):1680–7.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Mykytyn K, et al. Identification of the gene (BBS1) most commonly involved in Bardet-Biedl syndrome, a complex human obesity syndrome. Nat Genet. 2002;31(4):435–8.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Kwitek-Black AE, et al. Linkage of Bardet-Biedl syndrome to chromosome 16q and evidence for non-allelic genetic heterogeneity. Nat Genet. 1993;5(4):392–6.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Beales PL, et al. Genetic and mutational analyses of a large multiethnic Bardet-Biedl cohort reveal a minor involvement of BBS6 and delineate the critical intervals of other loci. Am J Hum Genet. 2001;68(3):606–16.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Nishimura DY, et al. Positional cloning of a novel gene on chromosome 16q causing Bardet-Biedl syndrome (BBS2). Hum Mol Genet. 2001;10(8):865–74.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Bruford EA, et al. Linkage mapping in 29 Bardet-Biedl syndrome families confirms loci in chromosomal regions 11q13, 15q22.3-q23, and 16q21. Genomics. 1997;41(1):93–9.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Carmi R, et al. Phenotypic differences among patients with Bardet-Biedl syndrome linked to three different chromosome loci. Am J Med Genet. 1995;59(2):199–203.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Mykytyn K, et al. Identification of the gene that, when mutated, causes the human obesity syndrome BBS4. Nat Genet. 2001;28(2):188–91.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Laurier V, et al. Pitfalls of homozygosity mapping: an extended consanguineous Bardet-Biedl syndrome family with two mutant genes (BBS2, BBS10), three mutations, but no triallelism. Eur J Hum Genet. 2006;14(11):1195–203.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Stoetzel C, et al. BBS10 encodes a vertebrate-specific chaperonin-like protein and is a major BBS locus. Nat Genet. 2006;38(5):521–4.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    White DR, et al. Autozygosity mapping of Bardet-Biedl syndrome to 12q21.2 and confirmation of FLJ23560 as BBS10. Eur J Hum Genet. 2007;15(2):173–8.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Otto EA, et al. Candidate exome capture identifies mutation of SDCCAG8 as the cause of a retinal-renal ciliopathy. Nat Genet. 2010;42(10):840–50.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Badano JL, et al. Identification of a novel Bardet-Biedl syndrome protein, BBS7, that shares structural features with BBS1 and BBS2. Am J Hum Genet. 2003;72(3):650–8.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Ansley SJ, et al. Basal body dysfunction is a likely cause of pleiotropic Bardet-Biedl syndrome. Nature. 2003;425(6958):628–33.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Kim JC, et al. The Bardet-Biedl protein BBS4 targets cargo to the pericentriolar region and is required for microtubule anchoring and cell cycle progression. Nat Genet. 2004;36(5):462–70.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Young TL, et al. A fifth locus for Bardet-Biedl syndrome maps to chromosome 2q31. Am J Hum Genet. 1999;64(3):900–4.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Li JB, et al. Comparative genomics identifies a flagellar and basal body proteome that includes the BBS5 human disease gene. Cell. 2004;117(4):541–52.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Chiang AP, et al. Comparative genomic analysis identifies an ADP-ribosylation factor-like gene as the cause of Bardet-Biedl syndrome (BBS3). Am J Hum Genet. 2004;75(3):475–84.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Sheffield VC, et al. Identification of a Bardet-Biedl syndrome locus on chromosome 3 and evaluation of an efficient approach to homozygosity mapping. Hum Mol Genet. 1994;3(8):1331–5.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Young TL, et al. Canadian Bardet-Biedl syndrome family reduces the critical region of BBS3 (3p) and presents with a variable phenotype. Am J Med Genet. 1998;78(5):461–7.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Ghadami M, et al. Bardet-Biedl syndrome type 3 in an Iranian family: clinical study and confirmation of disease localization. Am J Med Genet. 2000;94(5):433–7.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Fan Y, et al. Mutations in a member of the Ras superfamily of small GTP-binding proteins causes Bardet-Biedl syndrome. Nat Genet. 2004;36(9):989–93.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Nishimura DY, et al. Comparative genomics and gene expression analysis identifies BBS9, a new Bardet-Biedl syndrome gene. Am J Hum Genet. 2005;77(6):1021–33.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Stoetzel C, et al. Identification of a novel BBS gene (BBS12) highlights the major role of a vertebrate-specific branch of chaperonin-related proteins in Bardet-Biedl syndrome. Am J Hum Genet. 2007;80(1):1–11.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Hildebrandt F, Benzing T, Katsanis N. Ciliopathies. N Engl J Med. 2011;364(16):1533–43.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Zaghloul NA, Katsanis N. Functional modules, mutational load and human genetic disease. Trends Genet. 2010;26(4):168–76.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Slavotinek AM, et al. Mutations in MKKS cause Bardet-Biedl syndrome. Nat Genet. 2000;26(1):15–6.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Robinow M, Shaw A. The McKusick-Kaufman syndrome: recessively inherited vaginal atresia, hydrometrocolpos, uterovaginal duplications, anorectal anomalies, postaxial polydactyly, and congenital heart disease. J Pediatr. 1979;94(5):776–8.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Leitch CC, et al. Hypomorphic mutations in syndromic encephalocele genes are associated with Bardet-Biedl syndrome. Nat Genet. 2008;40(4):443–8.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Marion V, et al. Exome sequencing identifies mutations in LZTFL1, a BBSome and smoothened trafficking regulator, in a family with Bardet – Biedl syndrome with situs inversus and insertional polydactyly. J Med Genet. 2012;49(5):317–21.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Mykytyn K, et al. Evaluation of complex inheritance involving the most common Bardet-Biedl syndrome locus (BBS1). Am J Hum Genet. 2003;72(2):429–37.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Hichri H, et al. Testing for triallelism: analysis of six BBS genes in a Bardet-Biedl syndrome family cohort. Eur J Hum Genet. 2005;13(5):607–16.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Polychronakos D, Tsipas D, Leanis D. Laurence-Moon-Bardet-Biedl syndrome. Acta Ophthal Hetair Borei Hellad. 1963;12:45–54.Google Scholar
  106. 106.
    Klein D. Genetic approach to the nosology of retinal disorders. Birth Defects Orig Artic Ser. 1971;7(3):52–82.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Macklin MT. The Laurence-Moon Biedl syndrome: a genetic study. J Hered. 1936;27:97–104.CrossRefGoogle Scholar
  108. 108.
    Stern C. Principles of human genetics. San Francisco: W.H. Freeman and Co; 1960. p. 240–375.Google Scholar
  109. 109.
    Croft JB, Swift M. Obesity, hypertension, and renal disease in relatives of Bardet-Biedl syndrome sibs. Am J Med Genet. 1990;36(1):37–42.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Croft JB, et al. Obesity in heterozygous carriers of the gene for the Bardet-Biedl syndrome. Am J Med Genet. 1995;55(1):12–5.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Cox GF, et al. Retinal function in carriers of Bardet-Biedl syndrome. Arch Ophthalmol. 2003;121(6):804–10.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Bergsma DR, Brown KS. Assessment of ophthalmologic, endocrinologic and genetic findings in the Bardet-Biedl syndrome. Birth Defects Orig Artic Ser. 1975;11(2):132–6.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Katsanis N. The oligogenic properties of Bardet-Biedl syndrome. Hum Mol Genet. 2004;13 Spec No 1:R65–R71.CrossRefGoogle Scholar
  114. 114.
    Slavotinek AM, et al. Mutation analysis of the MKKS gene in McKusick-Kaufman syndrome and selected Bardet-Biedl syndrome patients. Hum Genet. 2002;110(6):561–7.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Chen J, et al. Molecular analysis of Bardet-Biedl syndrome families: report of 21 novel mutations in 10 genes. Invest Ophthalmol Vis Sci. 2011;52(8):5317–24.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Hjortshoj TD, et al. Bardet-Biedl syndrome in Denmark – report of 13 novel sequence variations in six genes. Hum Mutat. 2010;31(4):429–36.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Zaghloul NA, et al. Functional analyses of variants reveal a significant role for dominant negative and common alleles in oligogenic Bardet-Biedl syndrome. Proc Natl Acad Sci U S A. 2010;107(23):10602–7.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Badano JL, et al. Dissection of epistasis in oligogenic Bardet-Biedl syndrome. Nature. 2006;439(7074):326–30.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    de Pontual L, et al. Epistatic interactions with a common hypomorphic RET allele in syndromic Hirschsprung disease. Hum Mutat. 2007;28(8):790–6.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Khanna H, et al. A common allele in RPGRIP1L is a modifier of retinal degeneration in ciliopathies. Nat Genet. 2009;41(6):739–45.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Putoux A, et al. KIF7 mutations cause fetal hydrolethalus and acrocallosal syndromes. Nat Genet. 2011;43(6):601–6.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Davis EE, et al. TTC21B contributes both causal and modifying alleles across the ciliopathy spectrum. Nat Genet. 2011;43(3):189–96.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Pirzada O, Taylor C. Modifier genes and cystic fibrosis liver disease. Hepatology. 2003;37(3):714. author reply 714PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Li JL, et al. A genome scan for modifiers of age at onset in Huntington disease: the HD MAPS study. Am J Hum Genet. 2003;73(3):682–7.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Pandya A, et al. Frequency and distribution of GJB2 (connexin 26) and GJB6 (connexin 30) mutations in a large North American repository of deaf probands. Genet Med. 2003;5(4):295–303.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Badano JL, Katsanis N. Beyond Mendel: an evolving view of human genetic disease transmission. Nat Rev Genet. 2002;3(10):779–89.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Bialas NJ, et al. Functional interactions between the ciliopathy-associated Meckel syndrome 1 (MKS1) protein and two novel MKS1-related (MKSR) proteins. J Cell Sci. 2009;122(Pt 5):611–24.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Blacque OE, et al. Loss of C. elegans BBS-7 and BBS-8 protein function results in cilia defects and compromised intraflagellar transport. Genes Dev. 2004;18(13):1630–42.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Kim JC, et al. MKKS/BBS6, a divergent chaperonin-like protein linked to the obesity disorder Bardet-Biedl syndrome, is a novel centrosomal component required for cytokinesis. J Cell Sci. 2005;118(Pt 5):1007–20.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Marion V, et al. Transient ciliogenesis involving Bardet-Biedl syndrome proteins is a fundamental characteristic of adipogenic differentiation. Proc Natl Acad Sci U S A. 2009;106(6):1820–5.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Sayer JA, et al. The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nat Genet. 2006;38(6):674–81.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Wiens CJ, et al. Bardet-Biedl syndrome-associated small GTPase ARL6 (BBS3) functions at or near the ciliary gate and modulates Wnt signaling. J Biol Chem. 2010;285(21):16218–30.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Nachury MV, et al. A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell. 2007;129(6):1201–13.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Locke M, et al. TRIM32 is an E3 ubiquitin ligase for dysbindin. Hum Mol Genet. 2009;18(13):2344–58.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Strutt D, Warrington SJ. Planar polarity genes in the Drosophila wing regulate the localisation of the FH3-domain protein multiple wing hairs to control the site of hair production. Development. 2008;135(18):3103–11.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Seo S, et al. A novel protein LZTFL1 regulates ciliary trafficking of the BBSome and smoothened. PLoS Genet. 2011;7(11):e1002358.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Badano JL, Teslovich TM, Katsanis N. The centrosome in human genetic disease. Nat Rev Genet. 2005;6(3):194–205.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Beisson J, Wright M. Basal body/centriole assembly and continuity. Curr Opin Cell Biol. 2003;15(1):96–104.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Dammermann A, Merdes A. Assembly of centrosomal proteins and microtubule organization depends on PCM-1. J Cell Biol. 2002;159(2):255–66.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Blatch GL, Lassle M. The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. BioEssays. 1999;21(11):932–9.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Gill SR, et al. Dynactin, a conserved, ubiquitously expressed component of an activator of vesicle motility mediated by cytoplasmic dynein. J Cell Biol. 1991;115(6):1639–50.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Blacque OE, Leroux MR. Bardet-Biedl syndrome: an emerging pathomechanism of intracellular transport. Cell Mol Life Sci. 2006;63(18):2145–61.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Yen HJ, et al. Bardet-Biedl syndrome genes are important in retrograde intracellular trafficking and Kupffer’s vesicle cilia function. Hum Mol Genet. 2006;15(5):667–77.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Stearns T, et al. ADP-ribosylation factor is functionally and physically associated with the Golgi complex. Proc Natl Acad Sci U S A. 1990;87(3):1238–42.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Dascher C, Balch WE. Dominant inhibitory mutants of ARF1 block endoplasmic reticulum to Golgi transport and trigger disassembly of the Golgi apparatus. J Biol Chem. 1994;269(2):1437–48.PubMedPubMedCentralGoogle Scholar
  146. 146.
    Lowe SL, Wong SH, Hong W. The mammalian ARF-like protein 1 (Arl1) is associated with the Golgi complex. J Cell Sci. 1996;109(Pt 1):209–20.PubMedPubMedCentralGoogle Scholar
  147. 147.
    Gerdes JM, Katsanis N. Small molecule intervention in microtubule-associated human disease. Hum Mol Genet. 2005;14 Spec No. 2:R291–R300.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Fath MA, et al. Mkks-null mice have a phenotype resembling Bardet-Biedl syndrome. Hum Mol Genet. 2005;14(9):1109–18.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    May-Simera HL, et al. Patterns of expression of Bardet-Biedl syndrome proteins in the mammalian cochlea suggest noncentrosomal functions. J Comp Neurol. 2009;514(2):174–88.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Torayama I, Ishihara T, Katsura I. Caenorhabditis elegans integrates the signals of butanone and food to enhance chemotaxis to butanone. J Neurosci. 2007;27(4):741–50.PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Takada T, et al. Expression of ADP-ribosylation factor (ARF)-like protein 6 during mouse embryonic development. Int J Dev Biol. 2005;49(7):891–4.PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Seo S, et al. BBS6, BBS10, and BBS12 form a complex with CCT/TRiC family chaperonins and mediate BBSome assembly. Proc Natl Acad Sci U S A. 2010;107(4):1488–93.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Kim J, Krishnaswami SR, Gleeson JG. CEP290 interacts with the centriolar satellite component PCM-1 and is required for Rab8 localization to the primary cilium. Hum Mol Genet. 2008;17(23):3796–805.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Rosenbaum JL, Witman GB. Intraflagellar transport. Nat Rev Mol Cell Biol. 2002;3(11):813–25.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Ou G, et al. Functional coordination of intraflagellar transport motors. Nature. 2005;436(7050):583–7.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Pan X, et al. Mechanism of transport of IFT particles in C. elegans cilia by the concerted action of kinesin-II and OSM-3 motors. J Cell Biol. 2006;174(7):1035–45.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Ou G, et al. Sensory ciliogenesis in Caenorhabditis elegans: assignment of IFT components into distinct modules based on transport and phenotypic profiles. Mol Biol Cell. 2007;18(5):1554–69.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Lechtreck KF, et al. The Chlamydomonas reinhardtii BBSome is an IFT cargo required for export of specific signaling proteins from flagella. J Cell Biol. 2009;187(7):1117–32.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Afzelius BA. The immotile-cilia syndrome: a microtubule-associated defect. CRC Crit Rev Biochem. 1985;19(1):63–87.PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Yoder BK, Hou X, Guay-Woodford LM. The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J Am Soc Nephrol. 2002;13(10):2508–16.PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Nauli SM, et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet. 2003;33(2):129–37.PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Davis EE, Brueckner M, Katsanis N. The emerging complexity of the vertebrate cilium: new functional roles for an ancient organelle. Dev Cell. 2006;11(1):9–19.PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Huangfu D, et al. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature. 2003;426(6962):83–7.PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Rohatgi R, Milenkovic L, Scott MP. Patched1 regulates hedgehog signaling at the primary cilium. Science. 2007;317(5836):372–6.PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Corbit KC, et al. Vertebrate smoothened functions at the primary cilium. Nature. 2005;437(7061):1018–21.PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Haycraft CJ, et al. Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet. 2005;1(4):e53.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Dai P, et al. Sonic Hedgehog-induced activation of the Gli1 promoter is mediated by GLI3. J Biol Chem. 1999;274(12):8143–52.PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Hsu SH, et al. Kif7 promotes hedgehog signaling in growth plate chondrocytes by restricting the inhibitory function of Sufu. Development. 2011;138(17):3791–801.PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Tayeh MK, et al. Genetic interaction between Bardet-Biedl syndrome genes and implications for limb patterning. Hum Mol Genet. 2008;17(13):1956–67.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20:781–810.PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Willert K, Nusse R. Beta-catenin: a key mediator of Wnt signaling. Curr Opin Genet Dev. 1998;8(1):95–102.PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    De Marco P, et al. Human neural tube defects: genetic causes and prevention. Biofactors. 2011;37(4):261–8.PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Tada M, Concha ML, Heisenberg CP. Non-canonical Wnt signalling and regulation of gastrulation movements. Semin Cell Dev Biol. 2002;13(3):251–60.PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Torban E, et al. Independent mutations in mouse Vangl2 that cause neural tube defects in looptail mice impair interaction with members of the Dishevelled family. J Biol Chem. 2004;279(50):52703–13.PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Gerdes JM, et al. Disruption of the basal body compromises proteasomal function and perturbs intracellular Wnt response. Nat Genet. 2007;39.(author(11):1350–60.PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Benzing T, Simons M, Walz G. Wnt signaling in polycystic kidney disease. J Am Soc Nephrol. 2007;18(5):1389–98.PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Lancaster MA, Gleeson JG. Cystic kidney disease: the role of Wnt signaling. Trends Mol Med. 2010;16(8):349–60.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Schneider L, et al. PDGFRalphaalpha signaling is regulated through the primary cilium in fibroblasts. Curr Biol. 2005;15(20):1861–6.PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    Ezratty EJ, et al. A role for the primary cilium in notch signaling and epidermal differentiation during skin development. Cell. 2011;145(7):1129–41.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Gascue C, et al. Direct role of Bardet-Biedl syndrome proteins in transcriptional regulation. J Cell Sci. 2012;125(Pt 2):362–75.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Human Disease ModelingDuke University School of MedicineDurhamUSA

Personalised recommendations