Problems with Modified Theories of Gravity, as Alternatives to Dark Energy

  • Norbert Straumann
Part of the Einstein Studies book series (EINSTEIN, volume 14)


In this contribution to the conference “Beyond Einstein: Historical Perspectives on Geometry, Gravitation and Cosmology in the Twentieth Century,” we give a critical status report of attempts to explain the late accelerated expansion of the universe by modifications of general relativity. Our brief review of such alternatives to the standard cosmological model addresses mainly readers who have not pursued the vast recent literature on this subject.


  1. Amendola, L., Gannouji, R., Polarski, D., & Tsujikawa, S. (2007). Conditions for the cosmological viability of f(R) dark energy models. Physical Review D, 75, 083504. arXiv:gr-qc/0612180.Google Scholar
  2. Appleby, S. A., & Battye, R. A. (2007). Do consistent F(R) models mimic general relativity plus Λ? Physical Letters B, 654, 7. arXiv:0705.3199 [astro-ph].Google Scholar
  3. Barausse, E., Sotiriou, T. P., & Miller, J. C. (2008a). A no-go theorem for polytropic spheres in Palatini f(R) gravity. Classical Quantum Gravity, 25, 062001. arXiv:gr-qc/0703132.MathSciNetCrossRefGoogle Scholar
  4. Barausse, E., Sotiriou, T. P., & Miller, J. C. (2008b). Curvature singularities, tidal forces and viability of Palatini f(R) gravity. Classical Quantum Gravity, 25, 105008. arXiv:0712.1141.Google Scholar
  5. Bean, R., Bernat, D., Pogosian, L., Silvestri, A., & Trodden, M. (2007). Dynamics of linear perturbations in f(R) gravity. Physical Review D, 75, 064020. arXiv:astro-ph/0611321.Google Scholar
  6. Bertschinger, E., & Zukin, P. (2008). Distinguishing modified gravity from dark energy. Physical Review D, 78, 024015. arXiv:0801.2431 [astro-ph].Google Scholar
  7. Brax, Ph., van de Bruck, C. Davis, A.-C., Khoury, J., & Weltman, A. (2004). Chameleon dark energy. Physical Review D, 70, 123518. arXiv:astro-ph/04101103.Google Scholar
  8. Calcagni, G., de Carlos, B., & De Felice, A. (2006). Ghost conditions for Gauss-Bonnet cosmologies. Nuclear Physics B, 752, 404. arXiv:hep-th/0604201.MathSciNetCrossRefGoogle Scholar
  9. Capozziello, S., & Tsujikawa, S. (2008). Solar system and equivalence principle constraints on f(R) gravity by chameleon approach. Physical Review D , 77, 107501. arXiv:0712.2268 [gr-qc].Google Scholar
  10. Caroll, S. M., De Felice, A., Duvvuri, V., Easson, D., Trodden, M., & Turner, M. S. (2005). Cosmology of generalized modified gravity models. Physical Review D, 70, 063513. arXiv:astro-ph/0410031.Google Scholar
  11. Chiba, T., Smith, T. L., & Erickcek, A. L. (2007). Solar system constraints to general f(R) gravity. Physical Review D, 75, 124014. arXiv:astro-ph/0611867.Google Scholar
  12. Copeland, E. J., Sami, M., & Tsujikawa S. (2006). Dynamics of dark energy. International Journal of Modern Physics D, 15, 1753. arXiv:hep-th/0603057.MathSciNetCrossRefGoogle Scholar
  13. De Felice, A., Hindmarsh, M., & Trodden, M. (2006). Ghosts, instabilities, and superluminal propagation in modified gravity models. Journal of Cosmology and Astroparticle Physics, 0608, 005. arXiv:astro-ph/0604154.MathSciNetCrossRefGoogle Scholar
  14. Einstein, A. (1925). Einheitliche Feldtheorie von Gravitation und Elektrizität. In S. B. Preuss. Akad. Wiss. (pp. 414–419). Hoboken: WileyGoogle Scholar
  15. Faraoni, V. (2005). Modified gravity and the stability of de Sitter space. Physical Review D, 72, 061501(R). arXiv: gr-qc/0509008.Google Scholar
  16. Faulkner, T., Tegmark, M., Bunn, E. F., & Mao, Y. Constraining f(R) gravity as a scalar tensor theory. Physical Review D, 76, 063505. arXiv:astro-ph/0612569.Google Scholar
  17. Fay, S., Nesseris, R., & Perivolaropoulos, L. (2007). Can f(R) gravity theories mimic a ΛCDM cosmology? Physical Review D, 76, 063504. arXiv:gr-qc/0703006.Google Scholar
  18. Frolov, A. V. (2008). A singularity problem with f(R) dark energy. Physical Review Letters, 101, 061103. arXiv:0803.2500 [astro-ph].Google Scholar
  19. Hu, W. (2008). Parameterized post-Friedmann signatures of acceleration in the CMB. Physical Review D, 77, 103524. arXiv:0801.2433 [astro-ph].Google Scholar
  20. Hu W., & Sawicki, I. (2007). Models of f(R) cosmic acceleration that evade solar-system tests. Physical Review D, 76, 064004. arXiv:0705.1158 [astro-ph].Google Scholar
  21. Khoury, J., & Weltman, A. (2004a). Chameleon fields: Awaiting surprises for tests of gravity in space. Physical Review Letters, 93, 171104. arXiv:astro-ph/0309300.Google Scholar
  22. Khoury, J., & Weltman, A. (2004b). Chameleon cosmology. Physical Review D, 69, 044026. arXiv:astro-ph/0309411.Google Scholar
  23. Kobayashi, T., & Maeda, K. (2008). Relativistic stars in f(R) gravity, and absence thereof. Physical Review D, 78, 0644019. arXiv:0807.2503.Google Scholar
  24. Koivisto T., & Kurki-Suonio, H. (2006). Cosmological perturbations in the Palatini formulation of modified gravity. Classical Quantum Gravity, 23, 2355. arXiv:astro-ph/0509422.MathSciNetCrossRefGoogle Scholar
  25. Lanahan-Tremblay, N., & Faraoni, V. (2007). The Cauchy problem of f(R) gravity. Classical Quantum Gravity, 24, 5667. arXiv:0709.4414.MathSciNetCrossRefGoogle Scholar
  26. Maeda, K. i. (1989). Towards the Einstein-Hilbert action via conformal transformation. Physical Review D, 39, 3159.MathSciNetCrossRefGoogle Scholar
  27. Navarro, I., & Van Acoleyen, K. (2007). f(R) actions, cosmic acceleration and local tests of gravity. Journal of Cosmology and Astroparticle Physics, 0702(022) (2007). arXiv:gr-qc/0611127.Google Scholar
  28. Ostrogradski, M. (1850). Memoire Academie St. Petersburg, Ser. VI (Vol. 4, pp. 385).Google Scholar
  29. Pauli, W. (1985–99). In K. von Meyenn (Ed.). Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a. (Vol. 1–4). New York: Springer.Google Scholar
  30. Pogosian L., & Silvestri, A. (2007). The pattern of growth in viable f(R) cosmologies. Physical Review D, 77, 023503. arXiv:0709.0296.Google Scholar
  31. Salgado, M. (2006). Classical Quantum Gravity, 23, 4719 (2006).Google Scholar
  32. Salgado, M., Rio, D. M.-d. Alcubierre, M., & Nunez D. (2008). Physical Review D, 77, 104010. arXiv:0801.2372 [gr-qc].Google Scholar
  33. Song, Y., Sawicki, I., & Hu, W. (2006). The large scale structure of f(R) gravity. Physical Review D, 75, 064003. arXiv:astro-ph/0606286.Google Scholar
  34. Sotiriou, T. P. (2006). f(R) gravity and scalar-tensor theory. Classical Quantum Gravity, 23, 5117. arXiv:gr-qc/0604028.MathSciNetCrossRefGoogle Scholar
  35. Sotiriou T. P., & Faraoni V. (2010). f(R) theories of gravity. Reviews of Modern Physics, 82, 451–497. arXiv:0805.1726 [gr-qc].MathSciNetCrossRefGoogle Scholar
  36. Starobinsky, A. A. (2007). Disappearing cosmological constant in f(R) gravity. Jounal of Experimental and Theoretical Physics Letters, 86, 157. arXiv:0706.2041 [astro-ph].CrossRefGoogle Scholar
  37. Straumann, N. (2007). Dark energy. In Approaches to fundamental physics. In E. Seiler & I.-O. Stamatescu (Eds.), Lecture Notes in Physics (Vol. 721, pp. 327–397). Berlin: Springer.Google Scholar
  38. Velo, G., & Zwanziger, D. (1969a). Propagation and quantization of Rarita-Schwinger waves in an external electromagnetic potential. Physical Review, 186, 1337–1341.CrossRefGoogle Scholar
  39. Velo, G., & Zwanziger, D. (1969b). Noncausality and other defects of interaction Lagrangians for particles with spin one and higher. Physical Review, 188, 2218–2222.CrossRefGoogle Scholar
  40. Whitt, B. (1984). Fourth order gravity as general relativity plus matter. Physics Letters B, 145, 176.MathSciNetCrossRefGoogle Scholar
  41. Woodard, R. P. (2007). Avoiding dark energy with 1/R modifications of gravity. Lecture Notes in Physics, 720, 403. arXiv:astro-ph/0601672.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Norbert Straumann
    • 1
  1. 1.Physik-InstitutUniversity of ZurichZurichSwitzerland

Personalised recommendations