Surgical Approach to Articular Cartilage Repair

  • Jaskarndip Chahal
  • Benedict A. Rogers
  • Allan E. GrossEmail author


This chapter provides a comprehensive approach to evaluating patients with articular cartilage defects, as well as a description of treatment algorithms and surgical techniques. During the initial workup (history, physical exam, imaging), a thorough lower extremity assessment is emphasized such that comorbidities including ligamentous instability, malalignment, and meniscal deficiency can be concomitantly addressed. Patient and defect-specific factors pertinent to surgical decision-making are discussed along with an evidence-based and technical overview of common surgical approaches including microfracture, osteochondral (OC) autograft/allograft, and autologous chondrocyte implantation (ACI). An approach to patients with a failed index cartilage procedure is also described.


Osteochondral allograft Osteochondral autograft Autologous chondrocyte implantation Microfracture Treatment algorithm Revision surgery Comorbidities 


  1. 1.
    Shelbourne KD, Jari S, Gray T. Outcome of untreated traumatic articular cartilage defects of the knee: a natural history study. J Bone Joint Surg Am. 2003;85-A(Suppl 2):8–16.CrossRefGoogle Scholar
  2. 2.
    Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG. Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy. 1997;13(4):456–60.Google Scholar
  3. 3.
    Shapiro F, Koide S, Glimcher MJ. Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg Am. 1993;75(4):532–53.PubMedCrossRefGoogle Scholar
  4. 4.
    Chahal J, Thiel GV, Hussey K, Cole BJ. Managing the patient with failed cartilage restoration. Sports Med Arthrosc. 2013;21(2):62–8.Google Scholar
  5. 5.
    Demange M, Gomoll AH. The use of osteochondral allografts in the management of cartilage defects. Curr Rev Musculoskelet Med. 2012;5(3):229–35.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Frank R, et al. Complex problems in knee articular cartilage. In: Cole BJ, Sekiya JK, editors. Surgical techniques of shoulder, elbow, and knee in sports medicine. 2nd ed. Saunders; 2013.Google Scholar
  7. 7.
    Cole BJ, Pascual-Garrido C, Grumet RC. Surgical management of articular cartilage defects in the knee. J Bone Joint Surg Am. 2009;91(7):1778–90.Google Scholar
  8. 8.
    Gomoll AH, et al. Surgical management of articular cartilage defects of the knee. J Bone Joint Surg Am. 2010;92(14):2470–90.Google Scholar
  9. 9.
    Redler LH, et al. Management of articular cartilage defects of the knee. Phys Sportsmed. 2012;40(1):20–35.PubMedCrossRefGoogle Scholar
  10. 10.
    Gomoll AH, et al. Preoperative measurement of cartilage defects by MRI underestimates lesion size. Cartilage. 2011;2(4):389–93.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Harris JD, et al. Biological knee reconstruction: a systematic review of combined meniscal allograft transplantation and cartilage repair or restoration. Arthroscopy. 2011;27(3):409–18.PubMedCrossRefGoogle Scholar
  12. 12.
    Peterson L, et al. Treatment of osteochondritis dissecans of the knee with autologous chondrocyte transplantation: results at two to ten years. J Bone Joint Surg Am. 2003;85-A(Suppl 2):17–24.CrossRefGoogle Scholar
  13. 13.
    Fulkerson JP. Anteromedialization of the tibial tuberosity for patellofemoral malalignment. Clin Orthop Relat Res. 1983;177:176–81.Google Scholar
  14. 14.
    Buckwalter JA, Mankin HJ. Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr Course Lect. 1998;47:477–86.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Caplan AI, et al. Principles of cartilage repair and regeneration. Clin Orthop Relat Res. 1997;342:254–69.CrossRefGoogle Scholar
  16. 16.
    Buckwalter JA, Mankin HJ. Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect. 1998;47:487–504.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Meyers MH, Akeson W, Convery FR. Resurfacing of the knee with fresh osteochondral allograft. J Bone Joint Surg Am. 1989;71(5):704–13.PubMedCrossRefGoogle Scholar
  18. 18.
    Noyes FR, Barber-Westin SD. Meniscus transplantation: indications, techniques, clinical outcomes. Instr Course Lect. 2005;54:341–53.PubMedGoogle Scholar
  19. 19.
    Bekkers JE, Inklaar M, Saris DB. Treatment selection in articular cartilage lesions of the knee: a systematic review. Am J Sports Med. 2009;37(Suppl 1):148S–55S.PubMedCrossRefGoogle Scholar
  20. 20.
    Harris JD, et al. Autologous chondrocyte implantation: a systematic review. J Bone Joint Surg Am. 2010;92(12):2220–33.PubMedCrossRefGoogle Scholar
  21. 21.
    Chahal J, Gross AE, Gross C, Mall N, Dwyer T. Chahal A, Whelan DB, Cole BJ. Outcomes of osteochondral allograft transplantation in the knee. Arthroscopy. 2013;29(3):575–88.Google Scholar
  22. 22.
    Mithoefer K, et al. Return to sports participation after articular cartilage repair in the knee: scientific evidence. Am J Sports Med. 2009;37(Suppl 1):167S–76S.PubMedCrossRefGoogle Scholar
  23. 23.
    Krych AJ, Robertson CM, Williams RJ 3rd. Return to athletic activity after osteochondral allograft transplantation in the knee. Am J Sports Med. 2012;40(5):1053–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Kanneganti P, et al. The effect of smoking on ligament and cartilage surgery in the knee: a systematic review. Am J Sports Med. 2012;40(12):2872–8.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Cain EL, Clancy WG. Treatment algorithm for osteochondral injuries of the knee. Clin Sports Med. 2001;20(2):321–42.PubMedCrossRefGoogle Scholar
  26. 26.
    Vaquero J, Vidal C, Cubillo A. Intra-articular traumatic disorders of the knee in children and adolescents. Clin Orthop Relat Res. 2005;432:97–106.CrossRefGoogle Scholar
  27. 27.
    Kennedy JC, Grainger RW, McGraw RW. Osteochondral fractures of the femoral condyles. J Bone Joint Surg Br. 1966;48(3):436–40.PubMedCrossRefGoogle Scholar
  28. 28.
    Rorabeck CH, Bobechko WP. Acute dislocation of the patella with osteochondral fracture: a review of eighteen cases. J Bone Joint Surg Br. 1976;58(2):237–40.PubMedCrossRefGoogle Scholar
  29. 29.
    Rosenberg NJ. Osteochondral fractures of the lateral femoral condyle. J Bone Joint Surg Am. 1964;46:1013–26.PubMedCrossRefGoogle Scholar
  30. 30.
    Ahstrom JP Jr. Osteochondral fracture in the knee joint associated with hypermobility and dislocation of the patella. Report of eighteen cases. J Bone Joint Surg Am. 1965;47(8):1491–502.PubMedCrossRefGoogle Scholar
  31. 31.
    Makin M. Osteochondral fracture of the lateral femoral condyle. J Bone Joint Surg Am. 1951;33(A:1):262–4.PubMedCrossRefGoogle Scholar
  32. 32.
    Matthewson MH, Dandy DJ. Osteochondral fractures of the lateral femoral condyle: a result of indirect violence to the knee. J Bone Joint Surg Br. 1978;60-B(2):199–202.PubMedCrossRefGoogle Scholar
  33. 33.
    Sledge SL. Microfracture techniques in the treatment of osteochondral injuries. Clin Sports Med. 2001;20(2):365–77.PubMedCrossRefGoogle Scholar
  34. 34.
    Taitsman LA, et al. Osteochondral fracture of the distal lateral femoral condyle: a report of two cases. J Orthop Trauma. 2006;20(5):358–62.PubMedCrossRefGoogle Scholar
  35. 35.
    Binnet MS, et al. Arthroscopic fixation of intercondylar eminence fractures using a 4-portal technique. Arthroscopy. 2001;17(5):450–60.PubMedCrossRefGoogle Scholar
  36. 36.
    Binnet MS, et al. Histopathologic assessment of healed osteochondral fractures. Arthroscopy. 2001;17(3):278–85.PubMedCrossRefGoogle Scholar
  37. 37.
    O'Driscoll SW, Keeley FW, Salter RB. Durability of regenerated articular cartilage produced by free autogenous periosteal grafts in major full-thickness defects in joint surfaces under the influence of continuous passive motion. A follow-up report at one year. J Bone Joint Surg Am. 1988;70(4):595–606.PubMedCrossRefGoogle Scholar
  38. 38.
    O'Driscoll SW, Salter RB. The repair of major osteochondral defects in joint surfaces by neochondrogenesis with autogenous osteoperiosteal grafts stimulated by continuous passive motion. An experimental investigation in the rabbit. Clin Orthop Relat Res. 1986;208:131–40.Google Scholar
  39. 39.
    Shimizu T, et al. Experimental study on the repair of full thickness articular cartilage defects: effects of varying periods of continuous passive motion, cage activity, and immobilization. J Orthop Res. 1987;5(2):187–97.PubMedCrossRefGoogle Scholar
  40. 40.
    Murray RC, et al. Biomechanical comparison of the Herbert and AO cortical bone screws for compression of an equine third carpal bone dorsal plane slab osteotomy. Vet Surg. 1998;27(1):49–55.PubMedCrossRefGoogle Scholar
  41. 41.
    Barton NJ. The Herbert screw for fractures of the scaphoid. J Bone Joint Surg Br. 1996;78(4):517–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Herbert TJ, Fisher WE, Leicester AW. The Herbert bone screw: a ten year perspective. J Hand Surg Br. 1992;17(4):415–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Lewis PL, Foster BK. Herbert screw fixation of osteochondral fractures about the knee. Aust N Z J Surg. 1990;60(7):511–3.PubMedCrossRefGoogle Scholar
  44. 44.
    Mbubaegbu CE, Percy AJ. Femoral osteochondral fracture–a non-contact injury in martial arts? A case report. Br J Sports Med. 1994;28(3):203–5.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Mashoof AA, et al. Osteochondral injury to the mid-lateral weight-bearing portion of the lateral femoral condyle associated with patella dislocation. Arthroscopy. 2005;21(2):228–32.PubMedCrossRefGoogle Scholar
  46. 46.
    Wouters DB, van Horn JR, Bos RR. The use of biodegradables in the treatment of osteochondritis dissecans of the knee: fiction or future? Acta Orthop Belg. 2003;69(2):175–81.PubMedGoogle Scholar
  47. 47.
    Larsen MW, Pietrzak WS, DeLee JC. Fixation of osteochondritis dissecans lesions using poly(l-lactic acid)/ poly(glycolic acid) copolymer bioabsorbable screws. Am J Sports Med. 2005;33(1):68–76.PubMedCrossRefGoogle Scholar
  48. 48.
    Bostman OM. Osteolytic changes accompanying degradation of absorbable fracture fixation implants. J Bone Joint Surg Br. 1991;73(4):679–82.PubMedCrossRefGoogle Scholar
  49. 49.
    Mainil-Varlet P, Rahn B, Gogolewski S. Long-term in vivo degradation and bone reaction to various polylactides. 1. One-year results. Biomaterials. 1997;18(3):257–66.PubMedCrossRefGoogle Scholar
  50. 50.
    Wang X, et al. Tissue engineering of biphasic cartilage constructs using various biodegradable scaffolds: an in vitro study. Biomaterials. 2004;25(17):3681–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Tabaddor RR, et al. Fixation of juvenile osteochondritis dissecans lesions of the knee using poly 96L/4D-lactide copolymer bioabsorbable implants. J Pediatr Orthop. 2010;30(1):14–20.PubMedCrossRefGoogle Scholar
  52. 52.
    Braune C, et al. Resorbable pin refixation of an osteochondral fracture of the lateral femoral condyle due to traumatic patellar dislocation: case management, follow-up and strategy in adolescents. Z Orthop Ihre Grenzgeb. 2004;142(1):103–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Fuchs M, et al. Refixation of osteochondral fragments using absorbable implants. First results of a retrospective study. Chirurg. 2003;74(6):554–61.PubMedCrossRefGoogle Scholar
  54. 54.
    Wouters DB, et al. The meniscus arrow or metal screw for treatment of osteochondritis dissecans? In vitro comparison of their effectiveness. Knee Surg Sports Traumatol Arthrosc. 2004;12(1):52–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Wouters DB, et al. Fixation of osteochondral fragments in the human knee using meniscus arrows. Knee Surg Sports Traumatol Arthrosc. 2011;19(2):183–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Shermak MA, et al. Fixation of the craniofacial skeleton with butyl-2-cyanoacrylate and its effects on histotoxicity and healing. Plast Reconstr Surg. 1998;102(2):309–18.PubMedCrossRefGoogle Scholar
  57. 57.
    Shermak MA, et al. Butyl-2-cyanoacrylate fixation of mandibular osteotomies. Plast Reconstr Surg. 1998;102(2):319–24.PubMedCrossRefGoogle Scholar
  58. 58.
    Harper MC. Viscous isoamyl 2-cyanoacrylate as an osseous adhesive in the repair of osteochondral osteotomies in rabbits. J Orthop Res. 1988;6(2):287–92.PubMedCrossRefGoogle Scholar
  59. 59.
    Yilmaz C, Kuyurtar F. Fixation of a talar osteochondral fracture with cyanoacrylate glue. Arthroscopy. 2005;21(8):1009.PubMedCrossRefGoogle Scholar
  60. 60.
    Gul R, et al. Osteochondral fractures in the knee treated with butyl-2-cyanoacrylate glue. A case report. Acta Orthop Belg. 2006;72(5):641–3.PubMedGoogle Scholar
  61. 61.
    Bowers AL, Huffman GR. Suture bridge fixation of a femoral condyle traumatic osteochondral defect. Clin Orthop Relat Res. 2008;466(9):2276–81.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Merchan EC, Galindo E. Arthroscope-guided surgery versus nonoperative treatment for limited degenerative osteoarthritis of the femorotibial joint in patients over 50 years of age: a prospective comparative study. Arthroscopy. 1993;9(6):663–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Blain EJ, et al. Up-regulation of matrix metalloproteinase expression and activation following cyclical compressive loading of articular cartilage in vitro. Arch Biochem Biophys. 2001;396(1):49–55.PubMedCrossRefGoogle Scholar
  64. 64.
    Honda K, et al. The effects of high magnitude cyclic tensile load on cartilage matrix metabolism in cultured chondrocytes. Eur J Cell Biol. 2000;79(9):601–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Briggs KK, et al. Reliability, validity, and responsiveness of the Lysholm knee score and Tegner activity scale for patients with meniscal injury of the knee. J Bone Joint Surg Am. 2006;88(4):698–705.PubMedGoogle Scholar
  66. 66.
    Hubbard MJ. Articular debridement versus washout for degeneration of the medial femoral condyle. A five-year study. J Bone Joint Surg Br. 1996;78(2):217–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Lysholm J, Gillquist J. Evaluation of knee ligament surgery results with special emphasis on use of a scoring scale. Am J Sports Med. 1982;10(3):150–4.PubMedCrossRefGoogle Scholar
  68. 68.
    Barber FA, Iwasko NG. Treatment of grade III femoral chondral lesions: mechanical chondroplasty versus monopolar radiofrequency probe. Arthroscopy. 2006;22(12):1312–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Moseley JB, et al. A controlled trial of arthroscopic surgery for osteoarthritis of the knee. N Engl J Med. 2002;347(2):81–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Jackson RW, Dieterichs C. The results of arthroscopic lavage and debridement of osteoarthritic knees based on the severity of degeneration: a 4- to 6-year symptomatic follow-up. Arthroscopy. 2003;19(1):13–20.PubMedCrossRefGoogle Scholar
  71. 71.
    Harwin SF. Arthroscopic debridement for osteoarthritis of the knee: predictors of patient satisfaction. Arthroscopy. 1999;15(2):142–6.PubMedCrossRefGoogle Scholar
  72. 72.
    Baumgaertner MR, et al. Arthroscopic debridement of the arthritic knee. Clin Orthop Relat Res. 1990;253:197–202.Google Scholar
  73. 73.
    Kirkley A, et al. A randomized trial of arthroscopic surgery for osteoarthritis of the knee. N Engl J Med. 2008;359(11):1097–107.PubMedCrossRefGoogle Scholar
  74. 74.
    McNickle AG, Provencher MT, Cole BJ. Overview of existing cartilage repair technology. Sports Med Arthrosc. 2008;16(4):196–201.PubMedCrossRefGoogle Scholar
  75. 75.
    O'Driscoll SW. The healing and regeneration of articular cartilage. J Bone Joint Surg Am. 1998;80(12):1795–812.PubMedCrossRefGoogle Scholar
  76. 76.
    Friedman MJ, et al. Preliminary results with abrasion arthroplasty in the osteoarthritic knee. Clin Orthop Relat Res. 1984;182:200–5.Google Scholar
  77. 77.
    Convery FR, Akeson WH, Keown GH. The repair of large osteochondral defects. An experimental study in horses. Clin Orthop Relat Res. 1972;82:253–62.PubMedCrossRefGoogle Scholar
  78. 78.
    Kim HK, Moran ME, Salter RB. The potential for regeneration of articular cartilage in defects created by chondral shaving and subchondral abrasion. An experimental investigation in rabbits. J Bone Joint Surg Am. 1991;73(9):1301–15.PubMedCrossRefGoogle Scholar
  79. 79.
    Mitchell N, Shepard N. The resurfacing of adult rabbit articular cartilage by multiple perforations through the subchondral bone. J Bone Joint Surg Am. 1976;58(2):230–3.PubMedCrossRefGoogle Scholar
  80. 80.
    Salter RB, et al. The biological effect of continuous passive motion on the healing of full-thickness defects in articular cartilage. An experimental investigation in the rabbit. J Bone Joint Surg Am. 1980;62(8):1232–51.PubMedCrossRefGoogle Scholar
  81. 81.
    Hefti F, et al. Evaluation of knee ligament injuries with the IKDC form. Knee Surg Sports Traumatol Arthrosc. 1993;1(3–4):226–34.PubMedCrossRefGoogle Scholar
  82. 82.
    Johnson LL. Arthroscopic abrasion arthroplasty historical and pathologic perspective: present status. Arthroscopy. 1986;2(1):54–69.PubMedCrossRefGoogle Scholar
  83. 83.
    Rand JA. Role of arthroscopy in osteoarthritis of the knee. Arthroscopy. 1991;7(4):358–63.PubMedCrossRefGoogle Scholar
  84. 84.
    Benthien JP, Schwaninger M, Behrens P. We do not have evidence based methods for the treatment of cartilage defects in the knee. Knee Surg Sports Traumatol Arthrosc. 2011;19(4):543–52.PubMedCrossRefGoogle Scholar
  85. 85.
    Chen H, et al. Drilling and microfracture lead to different bone structure and necrosis during bone-marrow stimulation for cartilage repair. J Orthop Res. 2009;27(11):1432–8.CrossRefGoogle Scholar
  86. 86.
    Hurst JM, et al. Rehabilitation following microfracture for chondral injury in the knee. Clin Sports Med. 2010;29(2):257–65.CrossRefGoogle Scholar
  87. 87.
    Reinold MM, et al. Current concepts in the rehabilitation following articular cartilage repair procedures in the knee. J Orthop Sports Phys Ther. 2006;36(10):774–94.PubMedCrossRefGoogle Scholar
  88. 88.
    Frisbie DD, et al. Arthroscopic subchondral bone plate microfracture technique augments healing of large chondral defects in the radial carpal bone and medial femoral condyle of horses. Vet Surg. 1999;28(4):242–55.PubMedCrossRefGoogle Scholar
  89. 89.
    Bae DK, Yoon KH, Song SJ. Cartilage healing after microfracture in osteoarthritic knees. Arthroscopy. 2006;22(4):367–74.PubMedCrossRefGoogle Scholar
  90. 90.
    Steadman JR, et al. Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy. 2003;19(5):477–84.PubMedCrossRefGoogle Scholar
  91. 91.
    Mithoefer K, et al. Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidence-based systematic analysis. Am J Sports Med. 2009;37(10):2053–63.CrossRefGoogle Scholar
  92. 92.
    Orth P, et al. Small-diameter awls improve articular cartilage repair after microfracture treatment in a translational animal model. Am J Sports Med. 2016;44(1):209–19.PubMedCrossRefGoogle Scholar
  93. 93.
    Eldracher M, et al. Small subchondral drill holes improve marrow stimulation of articular cartilage defects. Am J Sports Med. 2014;42(11):2741–50.PubMedCrossRefGoogle Scholar
  94. 94.
    Chen H, et al. Depth of subchondral perforation influences the outcome of bone marrow stimulation cartilage repair. J Orthop Res. 2011;29(8):1178–84.PubMedCrossRefGoogle Scholar
  95. 95.
    Pipino G, Risitano S, Alviano F, Wu EJ, Bonsi L, Vaccarisi DC, Indelli PF. Microfractures and hydrogel scaffolds in the treatment of osteochondral knee defects: A clinical and histological evaluation. J Clin Orthop Trauma. 2019;10(1):67–75.Google Scholar
  96. 96.
    Yamashita F, et al. The transplantation of an autogeneic osteochondral fragment for osteochondritis dissecans of the knee. Clin Orthop Relat Res. 1985;201:43–50.Google Scholar
  97. 97.
    Bobic V. Arthroscopic osteochondral autograft transplantation in anterior cruciate ligament reconstruction: a preliminary clinical study. Knee Surg Sports Traumatol Arthrosc. 1996;3(4):262–4.PubMedCrossRefGoogle Scholar
  98. 98.
    Hangody L, Szigeti I, Karpati Z. A new method for the treatment of serious localized cartilage damage in the knee joint. Osteoporos Int. 1996;3:106–14.Google Scholar
  99. 99.
    Marcacci M, et al. Multiple osteochondral arthroscopic grafting (mosaicplasty) for cartilage defects of the knee: prospective study results at 2-year follow-up. Arthroscopy. 2005;21(4):462–70.PubMedCrossRefGoogle Scholar
  100. 100.
    Hangody L, et al. Mosaicplasty for the treatment of articular defects of the knee and ankle. Clin Orthop Relat Res. 2001;391(Suppl):S328–36.CrossRefGoogle Scholar
  101. 101.
    Ahmad CS, et al. Biomechanical and topographic considerations for autologous osteochondral grafting in the knee. Am J Sports Med. 2001;29(2):201–6.PubMedCrossRefGoogle Scholar
  102. 102.
    Bartz RL, et al. Topographic matching of selected donor and recipient sites for osteochondral autografting of the articular surface of the femoral condyles. Am J Sports Med. 2001;29(2):207–12.PubMedCrossRefGoogle Scholar
  103. 103.
    Morelli M, Nagamori J, Miniaci A. Management of chondral injuries of the knee by osteochondral autogenous transfer (mosaicplasty). J Knee Surg. 2002;15(3):185–90.PubMedGoogle Scholar
  104. 104.
    Hangody L, et al. Autologous osteochondral grafting–technique and long-term results. Injury. 2008;39(Suppl 1):S32–9.PubMedCrossRefGoogle Scholar
  105. 105.
    Hangody L, et al. Clinical experiences with autologous osteochondral mosaicplasty in an athletic population: a 17-year prospective multicenter study. Am J Sports Med. 2010;38(6):1125–33.PubMedCrossRefGoogle Scholar
  106. 106.
    Hangody L, Fules P. Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience. J Bone Joint Surg Am. 2003;85-A(Suppl 2):25–32.CrossRefGoogle Scholar
  107. 107.
    Gudas R, et al. Ten-year follow-up of a prospective, randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint of athletes. Am J Sports Med. 2012;40(11):2499–508.PubMedCrossRefGoogle Scholar
  108. 108.
    Solheim E, Hegna J, Strand T, Harlem T, Inderhaug E. Randomized study of long-term (15–17 Years) outcome after microfracture versus mosaicplasty in knee articular cartilage defects. Am J Sports Med. 2018;46(4):826–31.Google Scholar
  109. 109.
    Solheim E, Hegna J, Inderhaug E. Clinical outcome after mosaicplasty of knee articular cartilage defects of patellofemoral joint versus tibiofemoral joint. J Orthop. 2019;18:36–40.Google Scholar
  110. 110.
    Solheim E, Hegna J, Inderhaug E. Long-term survival after microfracture and mosaicplasty for knee articular cartilage repair: a comparative study between two treatments cohorts. Cartilage. 2018:1947603518783482. Epub ahead of print.
  111. 111.
    Viamont-Guerra MR, Bonin N, May O, Le Viguelloux A, Saffarini M, Laude F. Promising outcomes of hip mosaicplasty by minimally invasive anterior approach using osteochondral autografts from the ipsilateral femoral head. Knee Surg Sports Traumatol Arthrosc. 2019. Epub ahead of print.
  112. 112.
    O'Driscoll SW, Salter RB. The induction of neochondrogenesis in free intra-articular periosteal autografts under the influence of continuous passive motion. An experimental investigation in the rabbit. J Bone Joint Surg Am. 1984;66(8):1248–57.PubMedCrossRefGoogle Scholar
  113. 113.
    Asonuma K, Vacanti JP. Cell transplantation as replacement therapy for the future. Crit Care Nurs Clin North Am. 1992;4(2):249–54.PubMedCrossRefGoogle Scholar
  114. 114.
    Cima LG, et al. Tissue engineering by cell transplantation using degradable polymer substrates. J Biomech Eng. 1991;113(2):143–51.PubMedCrossRefGoogle Scholar
  115. 115.
    Goldberg VM, Caplan AI. Biological resurfacing: an alternative to total joint arthroplasty. Orthopedics. 1994;17(9):819–21.PubMedGoogle Scholar
  116. 116.
    Grandolfo M, et al. Culture and differentiation of chondrocytes entrapped in alginate gels. Calcif Tissue Int. 1993;52(1):42–8.PubMedCrossRefGoogle Scholar
  117. 117.
    Hendrickson DA, et al. Chondrocyte-fibrin matrix transplants for resurfacing extensive articular cartilage defects. J Orthop Res. 1994;12(4):485–97.PubMedCrossRefGoogle Scholar
  118. 118.
    Mow VC, et al. Experimental studies on repair of large osteochondral defects at a high weight bearing area of the knee joint: a tissue engineering study. J Biomech Eng. 1991;113(2):198–207.PubMedCrossRefGoogle Scholar
  119. 119.
    Wakitani S, et al. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg Am. 1994;76(4):579–92.PubMedCrossRefGoogle Scholar
  120. 120.
    Mehl J, Huck J, Bode G, Hohloch L, Schmitt A, Südkamp NP, Niemeyer P. Clinical mid- to long-term outcome after autologous chondrocyte implantation for patellar cartilage lesions and its correlation with the geometry of the femoral trochlea. Knee. 2019;26(2):364–73.Google Scholar
  121. 121.
    Yoon KH, Kang SG, Kwon YB, Kim EJ, Kim SG. Clinical outcomes and survival rate of autologous chondrocyte implantation with and without concomitant meniscus allograft transplantation: 10- to 15-year follow-up study. Arch Orthop Trauma Surg. 2019. Epub ahead of print.
  122. 122.
    Day JB, Gillogly SD. Autologous chondrocyte implantation in the knee. In: Cole BJ, Sekiya JK, editors. Surgical techniques of the shoulder, elbow, and knee in sports medicine. Philadelphia: Saunders Elsevier; 2008. p. 559–66.CrossRefGoogle Scholar
  123. 123.
    Brittberg M, et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331(14):889–95.CrossRefGoogle Scholar
  124. 124.
    Peterson L, et al. Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop Relat Res. 2000;374:212–34.CrossRefGoogle Scholar
  125. 125.
    O'Driscoll SW, Fitzsimmons JS. The role of periosteum in cartilage repair. Clin Orthop Relat Res. 2001;391(Suppl):S190–207.CrossRefGoogle Scholar
  126. 126.
    Gallay SH, et al. Relationship of donor site to chondrogenic potential of periosteum in vitro. J Orthop Res. 1994;12(4):515–25.PubMedCrossRefGoogle Scholar
  127. 127.
    Iwasaki M, et al. Regulation of proliferation and osteochondrogenic differentiation of periosteum-derived cells by transforming growth factor-beta and basic fibroblast growth factor. J Bone Joint Surg Am. 1995;77(4):543–54.PubMedCrossRefGoogle Scholar
  128. 128.
    Nakahara H, et al. In vivo osteochondrogenic potential of cultured cells derived from the periosteum. Clin Orthop Relat Res. 1990;259:223–32.Google Scholar
  129. 129.
    O'Driscoll SW, Recklies AD, Poole AR. Chondrogenesis in periosteal explants. An organ culture model for in vitro study. J Bone Joint Surg Am. 1994;76(7):1042–51.PubMedCrossRefGoogle Scholar
  130. 130.
    Poussa M, Rubak J, Ritsila V. Differentiation of the osteochondrogenic cells of the periosteum in chondrotrophic environment. Acta Orthop Scand. 1981;52(3):235–9.PubMedCrossRefGoogle Scholar
  131. 131.
    Roush JK, Manley PA, Wilson JW. Effects of immobilization on cartilage formation after periosteal grafting in the rabbit stifle. Vet Surg. 1989;18(5):340–6.PubMedCrossRefGoogle Scholar
  132. 132.
    Rubak JM, Poussa M, Ritsila V. Chondrogenesis in repair of articular cartilage defects by free periosteal grafts in rabbits. Acta Orthop Scand. 1982;53(2):181–6.PubMedCrossRefGoogle Scholar
  133. 133.
    Vachon AM, et al. Morphologic study of repair of induced osteochondral defects of the distal portion of the radial carpal bone in horses by use of glued periosteal autografts [corrected]. Am J Vet Res. 1991;52(2):317–27.PubMedGoogle Scholar
  134. 134.
    Zarnett R, et al. Cellular origin and evolution of neochondrogenesis in major full-thickness defects of a joint surface treated by free autogenous periosteal grafts and subjected to continuous passive motion in rabbits. Clin Orthop Relat Res. 1987;222:267–74.Google Scholar
  135. 135.
    Bartlett W, et al. Autologous chondrocyte implantation at the knee using a bilayer collagen membrane with bone graft. A preliminary report. J Bone Joint Surg Br. 2005;87:330–2.PubMedCrossRefGoogle Scholar
  136. 136.
    Haddo O, et al. The use of chondrogide membrane in autologous chondrocyte implantation. Knee. 2004;11:51–5.PubMedCrossRefGoogle Scholar
  137. 137.
    Krishnan SP, et al. Who is the ideal candidate for autologous chondrocyte implantation? J Bone Joint Surg Br. 2006;88:61–4.PubMedCrossRefGoogle Scholar
  138. 138.
    Macmull S, et al. Autologous chondrocyte implantation in the adolescent knee. Am J Sports Med. 2011;39(8):1723–30.PubMedCrossRefGoogle Scholar
  139. 139.
    Jungmann PM, et al. Autologous chondrocyte implantation for treatment of cartilage defects of the knee: what predicts the need for reintervention? Am J Sports Med. 2012;40(1):58–67.CrossRefGoogle Scholar
  140. 140.
    Pestka JM, et al. Clinical outcome of autologous chondrocyte implantation for failed microfracture treatment of full-thickness cartilage defects of the knee joint. Am J Sports Med. 2012;40(2):325–31.PubMedCrossRefGoogle Scholar
  141. 141.
    Saris D, et al. Matrix-applied characterized autologous cultured chondrocytes versus microfracture: two-year follow-up of a prospective randomized trial. Am J Sports Med. 2014;42(6):1384–94.PubMedCrossRefGoogle Scholar
  142. 142.
    Mistry H, et al. Autologous chondrocyte implantation in the knee: systematic review and economic evaluation. Health Technol Assess. 2017;21(6):1–294.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Gross AE, et al. The allotransplantation of partial joints in the treatment of osteoarthritis of the knee. Clin Orthop Relat Res. 1975;108:7–14.CrossRefGoogle Scholar
  144. 144.
    Farr J, et al. Clinical cartilage restoration: evolution and overview. Clin Orthop Relat Res. 2011;469(10):2696–705.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Williams JM, et al. Prolonged-fresh preservation of intact whole canine femoral condyles for the potential use as osteochondral allografts. J Orthop Res. 2005;23(4):831–7.PubMedCrossRefGoogle Scholar
  146. 146.
    Pearsall IAW, et al. Chondrocyte viability in refrigerated osteochondral allografts used for transplantation within the knee. Am J Sports Med. 2004;32(1):125–31.PubMedCrossRefGoogle Scholar
  147. 147.
    Williams SK, et al. Prolonged storage effects on the articular cartilage of fresh human osteochondral allografts. J Bone Joint Surg Am. 2003;85-A(11):2111–20.CrossRefGoogle Scholar
  148. 148.
    Garrett JC. Osteochondral allografts. Instr Course Lect. 1993;42:355–8.PubMedGoogle Scholar
  149. 149.
    Allen RT, et al. Analysis of stored osteochondral allografts at the time of surgical implantation. Am J Sports Med. 2005;33:1479–84.PubMedCrossRefGoogle Scholar
  150. 150.
    Kandel RA, et al. Histopathology of failed osteoarticular shell allografts. Clin Orthop Relat Res. 1985;197:103–10.Google Scholar
  151. 151.
    Williams SK, et al. Analysis of cartilage tissue on a cellular level in fresh osteochondral allograft retrievals. Am J Sports Med. 2007;35(12):2022–32.PubMedCrossRefGoogle Scholar
  152. 152.
    Czitrom AA, Keating S, Gross AE. The viability of articular cartilage in fresh osteochondral allografts after clinical transplantation. J Bone Joint Surg Am. 1990;72(4):574–81.PubMedCrossRefGoogle Scholar
  153. 153.
    Langer F, Gross AE. Immunogenicity of allograft articular cartilage. J Bone Joint Surg Am. 1974;56(2):297–304.PubMedCrossRefGoogle Scholar
  154. 154.
    Emmerson BC, et al. Fresh osteochondral allografting in the treatment of osteochondritis dissecans of the femoral condyle. Am J Sports Med. 2007;35(6):907–14.PubMedCrossRefGoogle Scholar
  155. 155.
    Gross AE, Shasha N, Aubin P. Long-term followup of the use of fresh osteochondral allografts for posttraumatic knee defects. Clin Orthop Relat Res. 2005;435:79–87.CrossRefGoogle Scholar
  156. 156.
    León SA, Mei XY, Safir OA, Gross AE, Kuzyk PR. Long-term results of fresh osteochondral allografts and realignment osteotomy for cartilage repair in the knee. Bone Joint J. 2019;101-B(1_Supple_A):46–52.Google Scholar
  157. 157.
    Abolghasemian M, León S, Lee PTH, Safir O, Backstein D, Gross AE, Kuzyk PRT. Long-term results of treating large posttraumatic tibial plateau lesions with fresh osteochondral allograft transplantation. J Bone Joint Surg Am. 2019;101(12):1102–08.Google Scholar
  158. 158.
    Ghazavi MT, et al. Fresh osteochondral allografts for post-traumatic osteochondral defects of the knee. J Bone Joint Surg Br. 1997;79(6):1008–13.PubMedCrossRefGoogle Scholar
  159. 159.
    Kang RW, Gomoll AH, Cole BJ. Osteochondral allografting in the knee. In: Cole BJ, Sekiya JK, editors. Surgical techniques of the shoulder, elbow, and knee in sports medicine, vol. 549-557. Philadelphia: Saunders Elsevier; 2008.Google Scholar
  160. 160.
    Aubin PP, et al. Long-term followup of fresh femoral osteochondral allografts for posttraumatic knee defects. Clin Orthop Relat Res. 2001;391(Suppl):S318–27.CrossRefGoogle Scholar
  161. 161.
    Gross AE, et al. Fresh osteochondral allografts for posttraumatic knee defects: long-term followup. Clin Orthop Relat Res. 2008;466(8):1863–70.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Medvedeva EV, Grebenik EA, Gornostaeva SN, Telpuhov VI, Lychagin AV, Timashev PS, Chagin AS. Repair of damaged articular cartilage: current approaches and future directions. Int J Mol Sci. 2018;19(8). pii: E2366.
  163. 163.
    Frank RM, Cotter EJ, Hannon CP, Harrast JJ, Cole BJ. Cartilage restoration surgery: incidence rates, complications, and trends as reported by the American board of orthopaedic surgery part II candidates. Arthroscopy. 2019;35(1):171–8.Google Scholar
  164. 164.
    Jones KJ, Kelley BV, Arshi A, McAllister DR, Fabricant PD. Comparative effectiveness of cartilage repair with respect to the minimal clinically important difference. Am J Sports Med. 2019;13:363546518824552. Epub ahead of print.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Jaskarndip Chahal
    • 1
    • 2
    • 3
  • Benedict A. Rogers
    • 4
    • 5
  • Allan E. Gross
    • 6
    • 7
    Email author
  1. 1.Division of Orthopaedic SurgeryUniversity of TorontoTorontoCanada
  2. 2.University of Toronto Orthopaedic Sports Medicine and University Health Network Arthritis ProgramTorontoCanada
  3. 3.Division of Orthopaedic SurgeryToronto Western Hospital and Women’s College HospitalTorontoCanada
  4. 4.Brighton and Sussex Medical SchoolBrightonUK
  5. 5.Trauma and Orthopaedics DepartmentBrighton and Sussex University Hospitals NHS TrustBrightonUK
  6. 6.Division of Orthopaedic SurgeryUniversity of TorontoTorontoCanada
  7. 7.Gluskin Granovsky Division of OrthopaedicsJoseph and Wolf Lebovic Health Complex, Mount Sinai HospitalTorontoCanada

Personalised recommendations