Advertisement

Low Beam Energy X-Ray Microanalysis

  • Joseph I. Goldstein
  • Dale E. Newbury
  • Joseph R. Michael
  • Nicholas W. M. Ritchie
  • John Henry J. Scott
  • David C. Joy
Chapter

Abstract

The incident beam energy, E0, is the parameter that determines which characteristic X-rays can be excited: the beam energy must exceed the critical excitation energy, Ec, for an atomic shell to initiate ionization and subsequent emission of characteristic X-rays. This dependence is parameterized with the “overvoltage” U0, defined as
$$ {U}_0={E}_0/{E}_c $$
U0 must exceed unity for X-ray emission. The intensity, Ich, of characteristic X-ray generation follows an exponential relation:
$$ {I}_{ch}={i}_Ba{\left({U}_0-1\right)}^n $$
where iB is the beam current, a and n are constants, with 1.5 ≤ n ≤ 2.

References

  1. Newbury D, Ritchie N (2015) Quantitative electron-excited X-ray microanalysis of borides, carbides, nitrides, oxides, and fluorides with scanning electron microscopy/silicon drift detector energy-dispersive spectrometry (SEM/SDD-EDS) and NIST DTSA-II. Micros Microanal 21:1327CrossRefGoogle Scholar
  2. Newbury D, Ritchie N (2016) Electron-excited X-ray microanalysis at low beam energy: almost always an adventure! Micros Microanal 22:735–753CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • Joseph I. Goldstein
    • 1
  • Dale E. Newbury
    • 2
  • Joseph R. Michael
    • 3
  • Nicholas W. M. Ritchie
    • 2
  • John Henry J. Scott
    • 2
  • David C. Joy
    • 4
  1. 1.University of MassachusettsAmherstUSA
  2. 2.National Institute of Standards and TechnologyGaithersburgUSA
  3. 3.Sandia National LaboratoriesAlbuquerqueUSA
  4. 4.University of TennesseeKnoxvilleUSA

Personalised recommendations