Advertisement

Attitude Control

  • F. Landis Markley
  • John L. Crassidis
Part of the Space Technology Library book series (SPTL, volume 33)

Abstract

Spacecraft attitude control is essential to meet mission pointing requirements, such as required science modes and thruster pointing requirements for orbital maneuvers. Early spacecraft mission designs used passive spin stabilization to hold one axis relatively fixed by spinning the spacecraft around that axis, usually the axis of maximum moment of inertia. Spin stabilization was mostly used due to the limited control actuation and lack of sophisticated computer technology to implement complex control laws. Spin-stabilized spacecraft are very stable, but they have to be sensitively balanced; every component has to be designed and located with spacecraft balance in mind. This can be extremely difficult to accomplish to the required accuracy. In most cases the last few weights are added and adjusted only after actual flight hardware is delivered and installed, and the spacecraft is experimentally spin tested. Allowances must also be made for everything onboard that can move during flight.

References

  1. 1.
    Agrawal, B.N., McClelland, R.S., Song, G.: Attitude control of flexible spacecraft using pulse-width pulse-frequency modulated thrusters. Space Tech. 17(1), 15–34 (1997)CrossRefGoogle Scholar
  2. 2.
    Anderson, B.D.O., Moore, J.B.: Optimal Control: Linear Quadratic Methods. Prentice Hall, Englewood Cliffs (1990)Google Scholar
  3. 3.
    Andrews, S.F., Campbell, C.E., Ericsson-Jackson, A.J., Markley, F.L., O’Donnell Jr., J.R.: MAP attitude control system design and analysis. In: Proceedings of the Flight Mechanics/Estimation Theory Symposium, pp. 445–456. NASA-Goddard Space Flight Center, Greenbelt (1997)Google Scholar
  4. 4.
    Arantes, G., Martins-Filho, L.S., Santana, A.C.: Optimal on-off attitude control for the Brazilian Multimission Platform satellite. Math. Probl. Eng. 2009(1) (2009)CrossRefGoogle Scholar
  5. 5.
    Åström, K.J.: Introduction to Stochastic Control Theory. Academic Press, New York (1970)zbMATHGoogle Scholar
  6. 6.
    Avanzini, G., Giulietti, F.: Magnetic detumbling of a rigid spacecraft. J. Guid. Contr. Dynam. 35(4), 1326–1334 (2012)CrossRefGoogle Scholar
  7. 7.
    Bhat, S.P., Dham, A.S.: Controllability of spacecraft attitude under magnetic actuation. In: Proceedings of the 42nd IEEE Conference on Decision and Control, pp. 2383–2388. Maui (2003)Google Scholar
  8. 8.
    Camillo, P.J., Markley, F.L.: Orbit-averaged behavior of magnetic control laws for momentum unloading. J. Guid. Contr. 3(6), 563–568 (1980)CrossRefGoogle Scholar
  9. 9.
    Challa, M.S., Natanson, G.A., Baker, D.E., Deutschmann, J.K.: Advantages of estimating rate corrections during dynamic propagation of spacecraft rates-applications to real-time attitude determination of SAMPEX. In: Proceedings of the Flight Mechanics/Estimation Theory Symposium, pp. 481–495. NASA-Goddard Space Flight Center, Greenbelt (1994)Google Scholar
  10. 10.
    Chen, L.C., Lerner, G.M.: Three-axis attitude determination. In: Wertz, J.R. (ed.) Sun Sensor Models, chap. 7. Kluwer Academic, Dordrecht (1978)Google Scholar
  11. 11.
    Chu, D., Harvie, E.: Accuracy of the ERBS definitive attitude determination system in the presence of propagation noise. In: Proceedings of the Flight Mechanics/Estimation Theory Symposium, pp. 97–114. NASA-Goddard Space Flight Center, Greenbelt (1990)Google Scholar
  12. 12.
    Crassidis, J.L., Junkins, J.L.: Optimal Estimation of Dynamic Systems, 2nd edn. CRC Press, Boca Raton (2012)zbMATHGoogle Scholar
  13. 13.
    Crassidis, J.L., Markley, F.L.: Sliding mode control using modified Rodrigues parameters. J. Guid. Contr. Dynam. 19(6), 1381–1383 (1996)CrossRefGoogle Scholar
  14. 14.
    Crassidis, J.L., Markley, F.L.: Predictive filtering for attitude estimation without rate sensors. J. Guid. Contr. Dynam. 20(3), 522–527 (1997)CrossRefGoogle Scholar
  15. 15.
    Crassidis, J.L., Vadali, S.R., Markley, F.L.: Optimal variable-structure control tracking of spacecraft maneuvers. J. Guid. Contr. Dynam. 23(3), 564–566 (2000)CrossRefGoogle Scholar
  16. 16.
    Davis, M.: Linear Estimation and Stochastic Control. Chapman and Hall, London (1977)zbMATHGoogle Scholar
  17. 17.
    Dorf, R.C., Bishop, R.H.: Modern Control Systems. Addison Wesley Longman, Menlo Park (1998)Google Scholar
  18. 18.
    Dwyer, T.A.W., Sira-Ramirez, H.: Variable structure control of spacecraft reorientation maneuvers. J. Guid. Contr. Dynam. 11(3), 262–270 (1988)CrossRefGoogle Scholar
  19. 19.
    Flatley, T.W., Forden, J.K., Henretty, D.A., Lightsey, E.G., Markley, F.L.: On-board attitude determination and control algorithms for SAMPEX. In: Proceedings of the Flight Mechanics/Estimation Theory Symposium, pp. 379–398. NASA-Goddard Space Flight Center, Greenbelt (1990)Google Scholar
  20. 20.
    Frakes, J.P., Henretty, D.A., Flatley, T.W., Markley, F.L., Forden, J.K., Lightsey, E.G.: SAMPEX science pointing modes with velocity avoidance. In: Proceedings of the 2nd AAS/AIAA Spaceflight Mechanics Meeting, pp. 949–966. Colorado Springs (1992)Google Scholar
  21. 21.
    Junkins, J.L., Turner, J.D.: Optimal Spacecraft Rotational Maneuvers. Elsevier, New York (1986)zbMATHGoogle Scholar
  22. 22.
    Kang, W.: Nonlinear H control and its application to rigid spacecraft. IEEE Trans. Automat. Contr. 40(7), 1281–1285 (1995)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Dynamical Systems, The Three-Body Problem and Space Mission Design. Marsden Books, Pasadena (2011)Google Scholar
  24. 24.
    Krøvel, T.D.: Optimal tuning of PWPF modulator for attitude control. Master’s thesis, Norwegian University of Science and Technology, Department of Engineering Cybernetics, Trondheim (2005)Google Scholar
  25. 25.
    Lizarralde, F., Wen, J.T.Y.: Attitude control without angular velocity measurement: A passivity approach. IEEE Trans. Automat. Contr. 41(3), 468–472 (1996)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Lovera, M.: Optimal magnetic momentum control for inertially pointing spacecraft. Eur. J. Contr. 7(1), 30–39 (2001)CrossRefGoogle Scholar
  27. 27.
    Markley, F.L., Andrews, S.F., O’Donnell Jr., J.R., Ward, D.K.: Attitude control system of the Wilkinson Microwave Anisotropy Probe. J. Guid. Contr. Dynam. 28(3), 385–397 (2005)CrossRefGoogle Scholar
  28. 28.
    Markley, F.L., Flatley, T.W., Leoutsakos, T.: SAMPEX special pointing mode. In: Proceedings of the Flight Mechanics/Estimation Theory Symposium, pp. 201–215. NASA-Goddard Space Flight Center, Greenbelt (1995)Google Scholar
  29. 29.
    Mayhew, C.G., Sanfelice, R.G., Teel, A.R.: Robust global asymptotic attitude stabilization of a rigid body by quaternion-based hybrid feedback. In: Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, pp. 2522–2527. Shanghai (2009)Google Scholar
  30. 30.
    Mayhew, C.G., Sanfelice, R.G., Teel, A.R.: Quaternion-based hybrid control for robust global attitude tracking. IEEE Trans. Automat. Contr. AC-56(11), 2555–2566 (2011)MathSciNetCrossRefGoogle Scholar
  31. 31.
    McCullough, J.D., Flatley, T.W., Henretty, D.A., Markley, F.L., San, J.K.: Testing of the on-board attitude determination and control algorithms for SAMPEX. In: Proceedings of the Flight Mechanics/Estimation Theory Symposium, pp. 55–68. NASA-Goddard Space Flight Center, Greenbelt (1992)Google Scholar
  32. 32.
    Paielli, R.A., Bach, R.E.: Attitude control with realization of linear error dynamics. J. Guid. Contr. Dynam. 16(1), 182–189 (1993)CrossRefGoogle Scholar
  33. 33.
    Sanfelice, R.G., Messina, M.J., Tuna, S.E., Teel, A.R.: Robust hybrid controllers for continuous-time systems with applications to obstacle avoidance and regulation to disconnected set of points. In: American Control Conference, pp. 3352–3357. Minneapolis (2006)Google Scholar
  34. 34.
    Sanyal, A., Fosbury, A., Chaturvedi, N., Bernstein, D.S.: Inertia-free spacecraft attitude tracking with disturbance rejection and almost global stabilization. J. Guid. Contr. Dynam. 32(4), 1167–1178 (2009)CrossRefGoogle Scholar
  35. 35.
    Schaub, H., Akella, M.R., Junkins, J.L.: Adaptive control of nonlinear attitude motions realizing linear closed loop dynamics. J. Guid. Contr. Dynam. 24(1), 95–100 (2001)CrossRefGoogle Scholar
  36. 36.
    Schaub, H., Junkins, J.L.: Analytical Mechanics of Aerospace Systems, 2nd edn. American Institute of Aeronautics and Astronautics, New York (2009)zbMATHGoogle Scholar
  37. 37.
    Scrivener, S.L., Thompson, R.C.: Survey of time-optimal attitude maneuvers. J. Guid. Contr. Dynam. 17(2), 225–233 (1994)CrossRefGoogle Scholar
  38. 38.
    Shuster, M.D., Dellinger, W.F.: Spacecraft attitude determination and control. In: V.L. Pisacane (ed.) Fundamentals of Space Systems, 2nd edn., chap. 5. Oxford University Press, New York (2005)Google Scholar
  39. 39.
    Sidi, M.J.: Spacecraft Dynamics and Control: A Practical Engineering Approach. Cambridge University Press, New York (2006)Google Scholar
  40. 40.
    Silani, E., Lovera, M.: Magnetic spacecraft attitude control: A survey and some new results. Contr. Eng. Pract. 13(3), 357–371 (2005)CrossRefGoogle Scholar
  41. 41.
    Slotine, J.J.E., Li, W.: Applied Nonlinear Control. Prentice Hall, Englewood Cliffs (1991)Google Scholar
  42. 42.
    Stengel, R.F.: Optimal Control and Estimation. Dover Publications, New York (1994)zbMATHGoogle Scholar
  43. 43.
    Stickler, A.C., Alfriend, K.T.: Elementary magnetic attitude control system. J. Spacecraft Rockets 13(5), 282–287 (1976)CrossRefGoogle Scholar
  44. 44.
    Tsai, D.C., Markley, F.L., Watson, T.P.: SAMPEX spin stabilized mode. In: SpaceOps Conference. Heidelberg, Germany (2008). AIAA 2008–3435Google Scholar
  45. 45.
    Tsiotras, P.: Stabilization and optimality results for the attitude control problem. J. Guid. Contr. Dynam. 19(4), 772–779 (1996)CrossRefGoogle Scholar
  46. 46.
    Vadali, S.R.: Variable structure control of spacecraft large angle maneuvers. J. Guid. Contr. Dynam. 9(2), 235–239 (1986)CrossRefGoogle Scholar
  47. 47.
    Vadali, S.R., Junkins, J.L.: Optimal open-loop and stable feedback control of rigid spacecraft maneuvers. J. Astronaut. Sci. 32(2), 105–122 (1984)Google Scholar
  48. 48.
    White, J.S., Shigemoto, F.H., Bourquin, K.: Satellite attitude control utilizing the Earth’s magnetic field. Tech. Rep. NASA-TN-D-1068, A-474, NASA Ames Research Center, Moffett Field (1961)Google Scholar
  49. 49.
    Wie, B.: Space Vehicle Dynamics and Control, 2nd edn. American Institute of Aeronautics and Astronautics, Reston (2008)Google Scholar
  50. 50.
    Wie, B., Barba, P.M.: Quaternion feedback for spacecraft large angle maneuvers. J. Guid. Contr. Dynam. 8(3), 360–365 (1985)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • F. Landis Markley
    • 1
  • John L. Crassidis
    • 2
  1. 1.Attitude Control Systems Engineering BranchNASA Goddard Space Flight CenterGreenbeltUSA
  2. 2.Mechanical and Aerospace EngineeringUniversity at Buffalo State University of New YorkAmherstUSA

Personalised recommendations