Advertisement

Dystonia

  • Jeff L. WaughEmail author
  • Trisha Multhapt-Buell
Chapter

Abstract

Dystonia is the third most common movement disorder. It is characterized by abnormal fixed positions and twisting movements. Dystonia can be sporadic or inherited. Classifications are made by age of onset, affected body part, whether it is primary, secondary or heredodegenerative, and by the presence or absence of other movement disorders. Numerous genes can cause dystonia, complicating testing and diagnosis. Inheritance patterns can be autosomal dominant, autosomal recessive, or X-linked. Incomplete penetrance, imprinting, pleiotropic genes, and heterogeneous conditions are all seen. These genetic phenomena can present difficulties for genetic counseling. The most common genetic dystonias are presented in this chapter.

Keywords

Deep Brain Stimulation Cervical Dystonia Generalize Dystonia Primary Dystonia Presymptomatic Testing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

Myoclonus dystonia Part 1 (MOV 254249 kb)

306795_1_En_4_MOESM2_ESM.mov (287.2 mb)
Myoclonus dystonia Part 2 (MOV 355128 kb)

References

  1. 1.
    Fuchs, T., & Ozelius, L. J. (2011). Genetics of dystonia. Seminars in Neurology, 31(5), 441–448.PubMedCrossRefGoogle Scholar
  2. 2.
    Fuchs, T., Saunders-Pullman, R., Masuho, I., Luciano, M. S., Raymond, D., Factor, S., et al. (2013). Mutations in GNAL cause primary torsion dystonia. Nature Genetics, 45(1), 88–92.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Bressman, S. B., Sabatti, C., Raymond, D., de Leon, D., Klein, C., Kramer, P. L., et al. (2000). The DYT1 phenotype and guidelines for diagnostic testing. Neurology, 54(9), 1746–1752.PubMedCrossRefGoogle Scholar
  4. 4.
    Markun, L. C., Starr, P. A., Air, E. L., Marks, W. J., Jr., Volz, M. M., & Ostrem, J. L. (2012). Shorter disease duration correlates with improved long-term deep brain stimulation outcomes in young-onset DYT1 dystonia. Neurosurgery, 71(2), 325–330.PubMedCrossRefGoogle Scholar
  5. 5.
    Panov, F., Gologorsky, Y., Connors, G., Tagliati, M., Miravite, J., & Alterman, R. L. (2013). Deep brain stimulation in DYT1 dystonia: A 10-year experience. Neurosurgery, 73(1), 86–93. discussion 93.PubMedCrossRefGoogle Scholar
  6. 6.
    Risch, N. J., Bressman, S. B., Senthil, G., & Ozelius, L. J. (2007). Intragenic cis and trans modification of genetic susceptibility in DYT1 torsion dystonia. The American Journal of Human Genetics, 80(6), 1188–1193.CrossRefGoogle Scholar
  7. 7.
    Lee, L. V., Munoz, E. L., Tan, K. T., & Reyes, M. T. (2001). Sex linked recessive dystonia parkinsonism of Panay, Philippines (XDP). Molecular Pathology, 54(6), 362–368.PubMedCentralPubMedGoogle Scholar
  8. 8.
    Evidente, V. G., Advincula, J., Esteban, R., Pasco, P., Alfon, J. A., Natividad, F. F., et al. (2002). Phenomenology of “Lubag” or X-linked dystonia-parkinsonism. Movement Disorders, 17(6), 1271–1279.PubMedCrossRefGoogle Scholar
  9. 9.
    Brashear, A., Dobyns, W. B., de Carvalho Aguiar, P., Borg, M., Frijns, C. J., Gollamudi, S., et al. (2007). The phenotypic spectrum of rapid-onset dystonia-parkinsonism (RDP) and mutations in the ATP1A3 gene. Brain, 130(Pt 3), 828–835.PubMedCrossRefGoogle Scholar
  10. 10.
    Raymond, D., Saunders-Pullman, R., de Carvalho, A. P., Schule, B., Kock, N., Friedman, J., et al. (2008). Phenotypic spectrum and sex effects in eleven myoclonus-dystonia families with epsilon-sarcoglycan mutations. Movement Disorders, 23(4), 588–592.PubMedCrossRefGoogle Scholar
  11. 11.
    Camargos, S., Lees, A. J., Singleton, A., & Cardoso, F. (2012). DYT16: The original cases. Journal of Neurology, Neurosurgery & Psychiatry, 83(10), 1012–1014.CrossRefGoogle Scholar
  12. 12.
    Nolte, D., Niemann, S., & Muller, U. (2003). Specific sequence changes in multiple transcript system DYT3 are associated with X-linked dystonia parkinsonism. Proceedings of the National Academy of Sciences of the United States of America, 100(18), 10347–10352.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Makino, S., Kaji, R., Ando, S., Tomizawa, M., Yasuno, K., Goto, S., et al. (2007). Reduced neuron-specific expression of the TAF1 gene is associated with X-linked dystonia-parkinsonism. The American Journal of Human Genetics, 80(3), 393–406.CrossRefGoogle Scholar
  14. 14.
    Furukawa, Y. (2013). GTP Cyclohydrolase 1-deficient dopa-responsive dystonia [online]. Retrieved December 6, 2013, from http://www.ncbi.nlm.nih.gov/books/NBK1508/
  15. 15.
    Muller, B., Hedrich, K., Kock, N., Dragasevic, N., Svetel, M., Garrels, J., et al. (2002). Evidence that paternal expression of the epsilon-sarcoglycan gene accounts for reduced penetrance in myoclonus-dystonia. The American Journal of Human Genetics, 71(6), 1303–1311.CrossRefGoogle Scholar
  16. 16.
    Grabowski, M., Zimprich, A., Lorenz-Depiereux, B., Kalscheuer, V., Asmus, F., Gasser, T., et al. (2003). The epsilon-sarcoglycan gene (SGCE), mutated in myoclonus-dystonia syndrome, is maternally imprinted. European Journal of Human Genetics, 11(2), 138–144.PubMedCrossRefGoogle Scholar
  17. 17.
    Foncke, E. M., Gerrits, M. C., van Ruissen, F., Baas, F., Hedrich, K., Tijssen, C. C., et al. (2006). Distal myoclonus and late onset in a large Dutch family with myoclonus-dystonia. Neurology, 67(9), 1677–1680.PubMedCrossRefGoogle Scholar
  18. 18.
    Caviness, J. N., & Brown, P. (2004). Myoclonus: Current concepts and recent advances. Lancet Neurology, 3(10), 598–607.CrossRefGoogle Scholar
  19. 19.
    Valente, E. M., Edwards, M. J., Mir, P., DiGiorgio, A., Salvi, S., Davis, M., et al. (2005). The epsilon-sarcoglycan gene in myoclonic syndromes. Neurology, 64(4), 737–739.PubMedCrossRefGoogle Scholar
  20. 20.
    Lyon, G., Kolodny, E. H., & Pastores, G. M. (2006). Neurology of hereditary metabolic diseases of children. New York, NY: McGraw-Hill.Google Scholar
  21. 21.
    Schneider, S. A., & Bhatia, K. P. (2010). Rare causes of dystonia parkinsonism. Current Neurology and Neuroscience Reports, 10(6), 431–439.PubMedCrossRefGoogle Scholar
  22. 22.
    Phukan, J., Albanese, A., Gasser, T., & Warner, T. (2011). Primary dystonia and dystonia-plus syndromes: Clinical characteristics, diagnosis, and pathogenesis. Lancet Neurology, 10(12), 1074–1085.CrossRefGoogle Scholar
  23. 23.
    Bhatia, K. P. (2011). Paroxysmal dyskinesias. Movement Disorders, 26(6), 1157–1165.PubMedCrossRefGoogle Scholar
  24. 24.
    Gardiner, A. R., Bhatia, K. P., Stamelou, M., Dale, R. C., Kurian, M. A., Schneider, S. A., et al. (2012). PRRT2 gene mutations: from paroxysmal dyskinesia to episodic ataxia and hemiplegic migraine. Neurology, 79(21), 2115–2121.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Lee, H. Y., Xu, Y., Huang, Y., Ahn, A. H., Auburger, G. W., Pandolfo, M., et al. (2004). The gene for paroxysmal non-kinesigenic dyskinesia encodes an enzyme in a stress response pathway. Human Molecular Genetics, 13(24), 3161–3170.PubMedCrossRefGoogle Scholar
  26. 26.
    Suls, A., Dedeken, P., Goffin, K., Van Esch, H., Dupont, P., Cassiman, D., et al. (2007). Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1, encoding the glucose transporter GLUT1. Brain, 131(Pt. 7), 1831–1844.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Child NeurologyBoston Children’s HospitalBostonUSA
  2. 2.Department of Neurology, Breakefield GroupMassachusetts General HospitalCharlestownUSA

Personalised recommendations