Advertisement

Some Recent Improvements in Electron Fractographic Analyses

  • C. D. Beachem
Part of the Sagamore Army Materials Research Conference Proceedings book series (SAMC)

Abstract

Laboratory documentation of the manner in which interactions between environment, structure, and stress produce microscopic fracture surface markings is enabling more informative failure analyses. Cataloging of new features and calibration of the features with stress intensity promises to aid in failure analyses.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beachem, C.D., “A New Model for Hydrogen-Assisted Cracking Hydrogen (‘Embrittlernent’)”, Met. Trans., 3 (1972), 437–51.Google Scholar
  2. 2.
    Meyn, D.A., “Effect of Hydrogen on Fracture and Inert-Environment Sustained Load Cracking Resistance of #x03B1;-#x03B2; Alloys”, Met. Trans., 5 (1974), 2405–14.CrossRefGoogle Scholar
  3. 3.
    Davidson, D.L., “Fracture Surface Examination by Selected Area Electron Channelling of Single Crystals of Mo-15 At. % Re Alloy”, J. Mater. Sci., 9 (1974), 1091–98.CrossRefGoogle Scholar
  4. 4.
    Newbury, D.E., Christ, B.W. and Joy, D.C., “Relevance of Electron Channeling Patterns to Embrittlement Studies”, Met. Trans., 5 (1974), 1505–08.CrossRefGoogle Scholar
  5. 5.
    Forsyth, P.J.E., “A Two Stage Process of Fatigue Crack Growth”, in Proceedings of the Crack Propagation Symposium, Cranfield, September 1961, Vol 1. Cranfield, England: College of Aeronautics (1961), 76–94.Google Scholar
  6. 6.
    Hertzberg, R.W. and Mills, W.J., “Character of Fatigue Fracture Surface Micromorphology in the Ultra-Low Growth Rate Regime”, in Fractography — Microscopic Cracking Processes. Special Technical Publication 600. Philadelphia: Am. Soc. for Testing and Materials (1976), 220–34.CrossRefGoogle Scholar
  7. 7.
    Meyn, D.A., “The Nature of Fatigue-Crack Propagation in Air and Vacuum for 2024 Aluminum”, ASM Trans. Quart., 61 (1968), 52–61.Google Scholar
  8. 8.
    Meyn, D.A., “An Analysis of Frequency and Amplitude Effects on Corrosion Fatigue Crack Propagation in Ti-8Al-lMo-lV”, Met. Trans., 2 (1971), 853–65.CrossRefGoogle Scholar
  9. 9.
    Whiteson, B.V., Phillips, A. and Kerlins, V., “Electron Fractography Handbook”, Douglas Aircraft Company, Inc., Santa Monica, Calif., Air Force Materials Laboratory Contract Report No. ML-TR-64–416, January 1965. (AD 612 912)Google Scholar
  10. 10.
    Beachem, C.D., “Microscopic Fatigue Fracture Surface Features in 2024-T3 Aluminum and the Influcence of Crack Propagation Angle Upon Their Formation”, ASM Trans. Quart., 60 (1967), 324–43.Google Scholar
  11. 11.
    Koterazawa, R., Mori, M., Matsuiti, M. and Shimo, D., “Fractographic Study of Fatigue Crack Propagation”, Trans. ASME, Ser. H, J. Eng. Mater. Technol., 95 (1973) 202–12.CrossRefGoogle Scholar
  12. 12.
    Beachem, C.D., “The Effects of Crack Tip Plastic Flow Directions Upon Microscopic Dimple Shapes”, Met. Trans. A, 6A (1975), 377–83.CrossRefGoogle Scholar
  13. 13.
    Beachem, C.D. and Yoder, G.R., “Elastic-Plastic Fracture by Homogeneous Microvoid Coalescence Tearing Along Alternating Shear Planes”, Met. Trans., 4 (1973), 1145–53.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • C. D. Beachem
    • 1
  1. 1.Naval Research LaboratoryUSA

Personalised recommendations