Advertisement

Part 6. Pressure Measurements for the Range 1 kPa to 100 μPa

  • Stanley Ruthberg

Abstract

The measurement of pressure between 1 kPa and 100μPa is complicated by the fact that the nature of the gas transport mechanism undergoes a distinct change within this range. The description of gas flow in rarefied gaseous systems is usually divided into three parts, with the division specified by the range in value of the ratio of the molecular mean free path to the characteristic dimension of the channel through which the gas passes. In the upper pressure range, for example at 1 kPa where the mean free path for all gases is less than 20 μm at 298 K, the characteristics of the flow are dominated by intermolecular collisions. Viscosity and thermal conductivity of the gases are independent of pressure; other properties such as temperature, density and flow velocity show small variation within a distance of one mean free path; therefore, the flow is hydrodynamical and viscous. In the low pressure range, for example at 100 μPa where the mean free path is of the order of 200 m at 298 K, the gas flow is characterized by molecular free flight, and transport is determined by gas-wall interactions. Discontinuities in temperature and variations in molecular flux may occur within the gas at a distance of one mean free path, and the flow is free-molecular flow. The transition from viscous to molecular flow at intermediate pressures is characterized by the influence of both types of collisions. No general derivations of flow equations are constructed from first principles for this transition range, and description is semi-empirical.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akiyama, Y., H. Hashimoto and K. Nakayama. J. Vac. Sci., Japan, 7, 12 (1964).Google Scholar
  2. 2.
    Anderson, J. R. Rev. Sci. Instrum. 29, 1073 (1958).CrossRefGoogle Scholar
  3. 3.
    Aubry, B. and R. Delbart. Le Vide, Paris, 117, 194 (1965).Google Scholar
  4. 4.
    Austin, W. E. Vacuum, 19, 319 (1969).CrossRefGoogle Scholar
  5. 5.
    Barton, R. S. and J. N. Chubb. Vacuum, 15, 113 (1965).CrossRefGoogle Scholar
  6. 6.
    Bashforth, F. and J. C. Adams. An Attempt to Test the Theories of Capillary Action, Cambridge University Press: London (1883).Google Scholar
  7. 7.
    Beams, J. W., J. L. Young and J. W. Moore. J. Appl. Phys. 17, 886 (1946).CrossRefGoogle Scholar
  8. 8.
    Blaisdell, B. E. J. Math. Phys. 19, 217 (1940).Google Scholar
  9. 9.
    Brombacher, W. G., D. P. Johnson and J. L. Cross. US Nat. Bur. Stand. Monogr. 8 (1960).Google Scholar
  10. 10.
    Brombacher, W. G. US Nat. Bur. Stand. Monogr. 114 (1970).Google Scholar
  11. 11.
    Burden, R. S. Surface Tension and the Spreading of liquids, 2nd ed. Cambridge University Press: London (1949).Google Scholar
  12. 12.
    Céspiro, Z. Vakuum Tekhnik. 17, 68 (1968).Google Scholar
  13. 13.
    Christian, R. G. Vacuum, 16, 175 (1966).CrossRefGoogle Scholar
  14. 14.
    Christian, R. G. and J. H. Leek. Vacuum, 16, 299 (1966).CrossRefGoogle Scholar
  15. 15.
    Clark, R. J. J. Sci. Instrum. 5, 126 (1928).CrossRefGoogle Scholar
  16. 16.
    Colgate, S. O. and P. A. Genre. Vacuum, 18, 553 (1968).CrossRefGoogle Scholar
  17. 17.
    Dadson, R. S., K. W. T. Elliott and D. M. Woodman. Proceedings of the Fourth International Vacuum Congress, p 1. Institute of Physics and the Physical Society: London (1968).Google Scholar
  18. 18.
    Dunoyer, L. Vacuum Practice, p 68. Bell: London (1926).Google Scholar
  19. 19.
    Dunoyer, L. Vacuum Practice, p 91. Bell: London (1926).Google Scholar
  20. 20.
    Dushman, S. and J. M. Lafferty. Scientific Foundations of Vacuum Technique, 2nd ed., p 244. Wiley: New York (1962).Google Scholar
  21. 21.
    Edwards, T. and J. P. Hobson. J. Vac. Sci. Technol. 2, 182 (1965).CrossRefGoogle Scholar
  22. 22.
    Elliott, K. W. T., D. M. Woodman and R. S. Dadson. Vacuum, 17, 439 (1967).CrossRefGoogle Scholar
  23. 23.
    Ernsberger, F. M. and H. W. Pitman. Rev. Sci. Instrum. 26, 584 (1955).CrossRefGoogle Scholar
  24. 24.
    Evrard, R. and G. A. Boutry. J. Vac. Sci. Technol. 6, 279 (1969).CrossRefGoogle Scholar
  25. 25.
    Flanick, A. P. and J. E. Ainsworth, Rev. Sci. Instrum. 32, 408 (1961).CrossRefGoogle Scholar
  26. 26.
    Gaede, W. Ann. Phys., Lpz. 46, 357 (1915).CrossRefGoogle Scholar
  27. 27.
    Gould, F. A. and T. Vickers. J. Sci. Instrum. 29, 35 (1952).CrossRefGoogle Scholar
  28. 28.
    Gourjault, J. J., J. Lefévre and P. S. Choumoff. J. Vac. Sci. Technol. 9, 206 (1972).CrossRefGoogle Scholar
  29. 29.
    Guildner, L. A., H. F. Stimson, R. E. Edsinger and R. L. Anderson. Metrologia, 6, 1 (1970).CrossRefGoogle Scholar
  30. 30.
    Hirschfelder, J. O., C. F. Curtiss and R. B. Bird. Molecular Theory of Gases and Liquids. Chapman and Hall: London (1954).Google Scholar
  31. 31.
    Hobson, J. P. J. Vac. Sci. Technol. 6, 257 (1969).CrossRefGoogle Scholar
  32. 32.
    Hobson, J. P., T. Edwards and R. Verreault. Canad. J. Phys. 41, 983 (1963).CrossRefGoogle Scholar
  33. 33.
    Huntress, A. H., A. L. Smith, B. D. Power and N. T. M. Dennis. Transactions of the Fourth National Vacuum Symposium, p 104. American Vacuum Society/Pergamon: New York (1958).Google Scholar
  34. 34.
    Ishii, H. and K. Nakayama. Transactions of the Eighth Vacuum Symposium and Second International Congress of 1961, p 519. Pergamon: New York (1961).Google Scholar
  35. 35.
    Jansen, C. G. and A. Venema. Vacuum, 9, 219 (1959).CrossRefGoogle Scholar
  36. 36.
    Keevil, N. G., R. F. Errington and L. T. Newman. Rev. Sci. Instrum. 12, 609 (1941).CrossRefGoogle Scholar
  37. 37.
    Kennard, E. H. Kinetic Theory of Gases, p 67. McGraw-Hill: New York (1938).Google Scholar
  38. 38.
    Kistemaker, J. Physica, 11, 270 (1945).CrossRefGoogle Scholar
  39. 39.
    Klumb, H. and H. Schwarz. Z. Phys. 122, 418 (1944).CrossRefGoogle Scholar
  40. 40.
    Knudsen, M. Ann. Phys., Lpz. 33, 1435 (1910); 83, 797 (1927).CrossRefGoogle Scholar
  41. 41.
    Knudsen, M. Ann. Phys., Lpz. 44, 525 (1914).CrossRefGoogle Scholar
  42. 42.
    Laplace, P. Traité de Mécanique Céleste. 10, 64. Duprat: Paris (1798, 1823).Google Scholar
  43. 43.
    Laplace, P. Oeuvres Completes. 4, 349. Gauthier-Villars: Paris (1880).Google Scholar
  44. 44.
    Leck, J. M. Pressure Measurement in Vacuum Systems, 2nd ed., p 35. Chapman and Hall: London (1964).Google Scholar
  45. 45.
    Liang, S. C. J. Appl. Phys. 22, 148 (1952); J. Phys. Chem. 57, 910 (1953).CrossRefGoogle Scholar
  46. 46.
    Maxwell, J. C. Phil. Trans. Roy. Soc, London, 170, 231 (1879).CrossRefGoogle Scholar
  47. 47.
    McLeod, H. Phil. Mag. 48, 110 (1874).Google Scholar
  48. 48.
    Meinke, C. and G. Reich. Vakuum-Technik, 12, 79 (1963); 11, 86 (1962); Vacuum, 13, 579 (1963).Google Scholar
  49. 49.
    Meinke, C. and G. Reich. J. Vac. Sci. Technol. 4, 356 (1967).CrossRefGoogle Scholar
  50. 50.
    Muendel, C. F. Z. Phys. Chem. 85, 435 (1913).Google Scholar
  51. 51.
    Nakayama, K. Jap. J. Appl. Phys. 7, 1114 (1968).CrossRefGoogle Scholar
  52. 52.
    Neumann, C. S.B. Akad. Wiss. Wien, Abt. IIa, 24, 49 (1872).Google Scholar
  53. 53.
    Nottingham, W. B. and F. L. Torney Jr. Transactions of the Seventh National Vacuum Symposium, p 117. American Vacuum Society/Pergamon: New York (1961).Google Scholar
  54. 54.
    Podgurski, H. H. and F. N. Davis. Vacuum, 10, 377 (1960).CrossRefGoogle Scholar
  55. 55.
    Podgurski, H. H. and F. N. Davis. J. Phys. Chem. 65, 1343 (1961).CrossRefGoogle Scholar
  56. 56.
    Rambeau, G. Le Vide, Paris, 24, 219 (1969).Google Scholar
  57. 57.
    Reynolds, O. Phil. Trans. Roy. Soc. London, 170, 727 (1879).CrossRefGoogle Scholar
  58. 58.
    Rosenberg, P. Rev. Sci. Instrum. 9, 258 (1938).CrossRefGoogle Scholar
  59. 59.
    Rothe, E. W. J. Vac. Sci. Technol. 1, 66 (1964).CrossRefGoogle Scholar
  60. 60.
    Rusch, M. and O. Bunge. Z. Tech. Phys. 13, 77 (1932).Google Scholar
  61. 61.
    Ruthberg, S. J. Vac. Sci. Technol. 6, 401 (1969).CrossRefGoogle Scholar
  62. 62.
    Schuhmann, S. Transactions of the Ninth National Vacuum Symposium, p 493. American Vacuum Society/Macmillan: New York (1962).Google Scholar
  63. 63.
    Siu, M. C. I. J. Res. Nat. Bur. Stand. 73A, 611 (1969).CrossRefGoogle Scholar
  64. 64.
    Smetana, F. O. and C. T. Carley Jr. J. Vac. Sci. Technol 3, 49 (1966).CrossRefGoogle Scholar
  65. 65.
    Stevenson, W. H. and P. W. McFadden. Rev. Sci. Instrum. 36, 1272 (1965).CrossRefGoogle Scholar
  66. 66.
    Stillman, M. H. Sci. Pap. US Nat. Bur. Stand. 10, 371 (1914).Google Scholar
  67. 67.
    Takaishi, T. Trans. Faraday Soc. 61, 840 (1965).CrossRefGoogle Scholar
  68. 68.
    Takaishi, T. and Y. Sensui. Vacuum, 20, 495 (1970).CrossRefGoogle Scholar
  69. 69.
    Thomas, A. M. and J. L. Cross. J. Vac. Sci. Technol. 4, 1 (1967).CrossRefGoogle Scholar
  70. 70.
    Thomas, A. M., D. P. Johnson and J. W. Little. Transactions of the Ninth National Vacuum Symposium, p 468. American Vacuum Society/Macmillan: New York (1962).Google Scholar
  71. 71.
    Tunnicliffe, R. J. and J. A. Rees. Vacuum, 17, 457 (1967).CrossRefGoogle Scholar
  72. 72.
    Vermandé, M. J. Le Vide, Paris, 7, 1145 (1952).Google Scholar
  73. 73.
    de Vries, A. E. and P. K. Rol. Vacuum, 15, 135 (1965).CrossRefGoogle Scholar
  74. 74.
    Weber, S. and G. Schmidt. Commun. Kamerlingh Onnes Lab., Leiden, 246c, 11 (1936).Google Scholar
  75. 75.
    Wetterer, G. Z. Tech. Phys. 20, 281 (1939).Google Scholar
  76. 76.
    Wu, Y. Ann. Phys., Lpz. 18, 321 (1966).CrossRefGoogle Scholar
  77. 77.
    Young, T. Miscellaneous Works, 1, 418 (1805).Google Scholar

Copyright information

© Springer Science+Business Media New York 1968

Authors and Affiliations

  • Stanley Ruthberg
    • 1
  1. 1.National Bureau of StandardsWashington, DCUSA

Personalised recommendations