Advertisement

The Ballistic Compression and High Temperature Properties of Dense Gases

  • G.T. Lalos
  • G.L. Hammond

Abstract

Gases at simultaneously high pressures and temperatures are finding increasing use in modern day technology. It is important, therefore, to develop new, improved techniques for producing and investigating the properties of hot, highly compressed gases. Historically, static gas compression with external heating was the first method employed. This technique, still in widespread use today, has the capability of generating gas pressures up to 15000 atm, but is limited in temperature to the melting point of structural materials.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

V. References

  1. 1.
    Baker, J. and H. Swift. J. Appl. Phys. 43, 950 (1972).CrossRefGoogle Scholar
  2. 2.
    Baylis, W., J. Chem. Phys. 51, 2665 (1969).CrossRefGoogle Scholar
  3. 3.
    Baylis, W., M. Pillon, G. Reck and R. Hood. Bull. Amer. Phys. Soc. 16, 1349 (1971).Google Scholar
  4. 4.
    Breene, R., The Shift and Shape of Spectral Lines. Pergamon: New York (1961).Google Scholar
  5. 5.
    Bryan, G. J. and E. C. Noonan. Proc. Roy. Soc. 246, 167 (1958).CrossRefGoogle Scholar
  6. 6.
    Burgess, D. and J. Grindlay. Astrophys. J. 161, 343 (1970).CrossRefGoogle Scholar
  7. 7.
    Cezairliyan, A., Applied Optics, 10, 1178 (1971).CrossRefGoogle Scholar
  8. 8.
    Charatis, G. and T. Hershey. University of Maryland IFDAM Tech. Note BN-361 (1964).Google Scholar
  9. 9.
    Ch’en, S. Y. and M. Takeo. Rev. Mod. Phys. 29, 20 (1957).CrossRefGoogle Scholar
  10. 10.
    Dodd, J., E. Enemark and A. Gallagher. J. Chem. Phys. 50, 4838 (1969).CrossRefGoogle Scholar
  11. 11.
    Dowling, J. A., J. Shumsky, J. Eckerman, R. E. Schlier and P. Kisatsky. Appl. Phys. Letters, 12, 184 (1968).CrossRefGoogle Scholar
  12. 12.
    Dowling, J., J. Davis, J. Eckerman, R. E. Schlier, J. Shumsky and P. Kisatsky. Applied Optics, 8, 1867 (1969).CrossRefGoogle Scholar
  13. 13.
    Doyle, R., Astrophys. J. 153, 987 (1968).CrossRefGoogle Scholar
  14. 14.
    Ecker, G., Z. Phys. 130, 585 (1951).CrossRefGoogle Scholar
  15. 15.
    Evans, C. and F. Evans. J. Fluid Mech. 1, 399 (1956).CrossRefGoogle Scholar
  16. 16.
    Faizullov, F. and N. Sobolev. Opt. Spectrosc. 11, 310 (1961).Google Scholar
  17. 17.
    Grasdalen, G., M. Huber and W. Parkinson. Astrophys. J. 156, 1153 (1969).CrossRefGoogle Scholar
  18. 18.
    Griem, H. R., Plasma Spectroscopy. McGraw-Hill: New York (1964).Google Scholar
  19. 19.
    Hammond, G. L., Astrophys. J. 136, 431 (1962).CrossRefGoogle Scholar
  20. 20.
    Hammond, G. L. and G. T. Lalos. NOLTR 71-228 (1971).Google Scholar
  21. 21.
    Hammond, G. L., University of Maryland Ph.D. Dissertation (unpublished) (1973).Google Scholar
  22. 22.
    Hanley, H. and M. Klein. Tech. Note US Nat. Bur. Stand No. 360 (1967).Google Scholar
  23. 23.
    Hanley, H. and M. Klein. J. Chem. Phys. 50, 4765 (1969).CrossRefGoogle Scholar
  24. 24.
    Hattenburg, A. Applied Optics, 6, 95 (1967).CrossRefGoogle Scholar
  25. 25.
    Henderson, U. V., H. A. Rhodes and V. M. Barnes. Rev. Sci. Instrum. 37, 294 (1966).CrossRefGoogle Scholar
  26. 26.
    Hilsenrath, J., C. Beckett, W. Benedict, L. Fano, H. Hoge, J. Masi, R. Nuttall, Y. Touloukian and H. Woolley. Circ. US Nat. Bur. Stand No. 564, Washington, D.C. (1955).Google Scholar
  27. 27.
    Hindmarsh, W., A. Petford and G. Smith. Proc. Roy. Soc. A, 207, 296 (1967).CrossRefGoogle Scholar
  28. 28.
    Hindmarsh, W., Atomic Physics, Vol. II, P. Sanders, Ed., Plenum: New York (1971).Google Scholar
  29. 29.
    Holmes Q., S. Y. Ch’en and M. Takeo. J. Quant. Spectrosc. Radiat. Transfer, 9, 749, 761, 769 (1969).CrossRefGoogle Scholar
  30. 30.
    Hood, R. and G. Reck. J. Chem. Phys. 56, 4053 (1972).CrossRefGoogle Scholar
  31. 31.
    Huber, M. and F. Tobey. Astrophys. J. 152, 609 (1968).CrossRefGoogle Scholar
  32. 32.
    Kendall, P., Appl. Spectrosc. 22, 274 (1968).CrossRefGoogle Scholar
  33. 33.
    Kislykh, V, V. Vasil’ev and E. Verem’ev. High Temperature (Moscow), 9, 836 (1972).Google Scholar
  34. 34.
    Klein, M., AEDC-TR-67-67, Arnold Engineering Development Center, Tullahoma, Tennessee (1967).Google Scholar
  35. 35.
    Klein, M. and H. Hanley. Trans. Faraday Soc. 64, 2927 (1968).CrossRefGoogle Scholar
  36. 36.
    Lalos, G. T., Rev. Sci. Instrum. 33, 214 (1962).CrossRefGoogle Scholar
  37. 37.
    Lalos, G. T. and G. L. Hammond. Astrophys. J. 135, 616 (1962).CrossRefGoogle Scholar
  38. 38.
    Lalos, G. T. and G. L. Hammond. Rev. Sci. Instrum. 36, 550 (1965).CrossRefGoogle Scholar
  39. 39.
    Lalos, G. T. and G. L. Hammond. NASA CR-72116 (NOLTR 66-202) (1966).Google Scholar
  40. 40.
    Lalos, G. T. and G. L. Hammond. NASA CR-72589 (NOLTR 70-15) (1969).Google Scholar
  41. 41.
    Lee, R. and E. Lewis. Applied Optics, 5, 1858 (1966).CrossRefGoogle Scholar
  42. 42.
    Lewis, M., B. Roman and G. Rouel. VKI Tech. Memo No. 23, Rhode-Saint-Genese: Belgium (1971).Google Scholar
  43. 43.
    Lick, W. and H. Emmons. Thermodynamic Properties of Helium to 50000 K. Harvard University Press: Cambridge, Mass. (1962).Google Scholar
  44. 44.
    Longwell, P. A., H. H. Reamer, N. P. Wilburn and B. H. Sage. Industr. Engng Chem. 50, 603 (1958).CrossRefGoogle Scholar
  45. 45.
    Longwell, P. A. and B. H. Sage. J. Chem. Engng Data, 5, 322 (1960).CrossRefGoogle Scholar
  46. 46.
    Michels, A. and H. Wouters. Physica, 8, 923 (1941).CrossRefGoogle Scholar
  47. 47.
    Michels, A. and A. Botzen. Physica, 15, 769 (1949).CrossRefGoogle Scholar
  48. 48.
    Miller, B. E., R. T. Schneider, K. Thorn and G. T. Lalos. Second Symposium on Uranium Plasmas: Research and Applications, Atlanta, Georgia (1971).Google Scholar
  49. 49.
    Minardi, J. and R. Schwartz, Aerospace Research Laboratories. Rep. No. ARL 63-167, Wright-Patterson AFB, Ohio (1963).Google Scholar
  50. 50.
    Olin, J. B. and B. H. Sage. J. Chem. Engng Data, 5, 16 (1960).CrossRefGoogle Scholar
  51. 51.
    Olin, J. B. and B. H. Sage. J. Chem. Engng Data, 6, 384 (1961).CrossRefGoogle Scholar
  52. 52.
    Olin, J. B., H. C. Wiese and B. H. Sage. J. Chem. Engng Data, 6, 372 (1961).CrossRefGoogle Scholar
  53. 53.
    Price, D. and G. T. Lalos. Industr. Engng Chem. 49, 1987 (1957).CrossRefGoogle Scholar
  54. 54.
    van Regemorter, H., Ann. Rev. Astron. Astrophys. 3, 71 (1965).CrossRefGoogle Scholar
  55. 55.
    Rowlinson, J., Molec. Phys. 7, 349 (1963).CrossRefGoogle Scholar
  56. 56.
    Ryabinin, Yu. N., Gases at High Densities and Temperatures, Pergamon: New York (1961).Google Scholar
  57. 57.
    Samson, J., Techniques of Vacuum Ultraviolet Spectroscopy, Wiley: New York (1967).Google Scholar
  58. 58.
    Sando, K, R. Doyle and A. Dalgarno. Astrophys. J. 157, L143 (1969).CrossRefGoogle Scholar
  59. 59.
    Schurer, K., Applied Optics, 7, 461 (1968).CrossRefGoogle Scholar
  60. 60.
    Silverman, S., J. Opt. Soc. Amer. 39, 275 (1949).CrossRefGoogle Scholar
  61. 61.
    Smith, D. and E. Starkman. Rev. Sci. Instrum. 40, 1541 (1969).CrossRefGoogle Scholar
  62. 62.
    Takeo, M., Q. Holmes and S. Y. Ch’en. J. Appl. Phys. 38, 3544 (1967).CrossRefGoogle Scholar
  63. 63.
    Theile, E., J. Chem. Phys. 39, 474 (1963).CrossRefGoogle Scholar
  64. 64.
    Traving, G., Uber die Theorie der Druckverbreiterung von Spektrallinien. Braun: Karlsruhe (1960).Google Scholar
  65. 65.
    Traving, G., Plasma Diagnostics, Chap. 2. W. Lochte-Holtgreven, Ed., North-Holland: Amsterdam (1968).Google Scholar
  66. 66.
    Tsiklis, D. S. and M. D. Borodina. Dokl. Akad. Nauk SSSR, 140, 1376 (1961).Google Scholar
  67. 67.
    Tsiklis, D. S. and M. D. Borodina. Dokl. Akad. Nauk SSSR, 147, 860 (1962).Google Scholar

Copyright information

© Springer Science+Business Media New York 1968

Authors and Affiliations

  • G.T. Lalos
    • 1
  • G.L. Hammond
    • 1
  1. 1.Naval Ordnance LaboratoryWhite Oak, Silver SpringMarylandUSA

Personalised recommendations