Advertisement

Chemical Relaxation in Liquid Systems

  • H. Strehlow
  • W. Knoche

Abstract

The rates of chemical reactions vary over many orders of magnitude. Some reactions are so slow at a given temperature that they practically do not occur, though the free enthalpy would decrease considerably. On the other hand, many chemical reactions occur very rapidly so that in some textbooks they are still called unmeasurably fast. This, however, is no longer true. Especially during the past twenty years a wealth of techniques has been developed to study reaction times much shorter than a second. Though the development and improvement of new techniques is still under way, the reaction rate of practically all types of chemical reactions can be measured by one or more methods.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

VI. References

  1. 1.
    Bechtler, A., K. G. Breitschwerdt and K. Tamm. J. Chem. Phys. 52, 2975 (1970).CrossRefGoogle Scholar
  2. 2.
    Beitz, J. V., G. W. Flynn, D. H. Turner and N. Sutin. J. Amer. Chem. Soc. 92, 4130 (1970).CrossRefGoogle Scholar
  3. 3.
    Bergmann, K., M. Eigen and L. De Maeyer. Ber. Bunsenges. Phys. Chem. 67, 819 (1963).Google Scholar
  4. 4.
    Caldin, E. F. and J. E. Crooks. J. Sci. Instrum. 44, 449 (1967).CrossRefGoogle Scholar
  5. 5.
    Czerlinsky, G. and M. Eigen. Z. Elektrochem. 63, 652 (1959).Google Scholar
  6. 6.
    Davies, C. W. Ion Association. Butterworths: London (1962).Google Scholar
  7. 7.
    Debye, P. Trans. Electrochem. Soc. 82, 265 (1942).CrossRefGoogle Scholar
  8. 8.
    Debye, P. and F. W. Sears. Proc. Nat. Acad. Sci. Wash. 18, 410 (1932).CrossRefGoogle Scholar
  9. 9.
    Eggers, F. Acustica, 19, 323 (1967/68).Google Scholar
  10. 10.
    Eggers, F. and K. Kustin. Methods in Enzymology, Vol. 16, Chap. 3. (Ed.: K. Kustin). Academic Press: New York (1969).Google Scholar
  11. 11.
    Eigen, M. Angew. Chemie. 75, 489 (1963).CrossRefGoogle Scholar
  12. 12.
    Eigen, M. Nobel Symposium, 5, 245. (Ed.: S. Claesson). Interscience: New York (1968).Google Scholar
  13. 13.
    Eigen, M. Nobel Symposium, 5, 333. (Ed.: S. Claesson). Interscience: New York (1968).Google Scholar
  14. 14.
    Eigen, M. and L. De Maeyer. Z. Elektrochem. 59, 986 (1955).Google Scholar
  15. 15.
    Eigen, M. and L. De Maeyer. Technique of Organic Chemistry, Vol. 8, Pt 2, Chap. 18. (Eds.: S. L. Friess, E. S. Lewis and A. Weissberger). Interscience: New York (1963).Google Scholar
  16. 16.
    Eigen, M. and J. Schoen. Z. Elektrochem. 59, 483 (1955).Google Scholar
  17. 17.
    Eigen, M. and K. Tamm. Z. Elektrochem. 66, 93 (1962).Google Scholar
  18. 18.
    Eigen, M. and R. Winkler. To be published.Google Scholar
  19. 19.
    Eigen, M., W. Kruse, G. Maass and L. De Maeyer. In Progress in Reaction Kinetics, Vol. II, p 285. (Ed.: G. Porter). Pergamon: New York (1964).Google Scholar
  20. 20.
    Ertl, G. and H. Gerischer. Z. Electrochem. 65, 629 (1961); 66, 560 (1962).Google Scholar
  21. 21.
    Firth, C. A., D. Hess and W. Knoche, submitted for publication in Adv. Mol. Relax. Proc. Google Scholar
  22. 22.
    Forster, H. J. Dissertation. Braunschweig (1971).Google Scholar
  23. 23.
    Gibson, Q. H. Methods in Enzvmology. Vol. 16, Chap. 6. (Ed.: K. Kustin). Academic Press: New York (1969).Google Scholar
  24. 24.
    Goldsack, D. E., R. E. Hurst and J. Love. Analyt. Biochem. 28, 273 (1969).CrossRefGoogle Scholar
  25. 25.
    Gutfreund, H. Methods in Enzymology. Vol. 16, Chap. 7. (Ed.: K. Kustin). Academic Press: New York (1969).Google Scholar
  26. 26.
    Hammes, G. G. and W. Knoche. J. Chem. Phys. 45, 4041 (1966).CrossRefGoogle Scholar
  27. 27.
    Heiisch, J. and W. Knoche. Ber. Bunsenges. Phys. Chem. 75, 951 (1971).Google Scholar
  28. 28.
    Hoffmann, G. W. Rev. Sci. Instrum. 42, 1643 (1971).CrossRefGoogle Scholar
  29. 29.
    Hoffmann, H. and E. Yeager. Rev. Sci. Instrum. 39, 1151 (1968).CrossRefGoogle Scholar
  30. 30.
    Hoffmann, H., E. Yeager and J. Stuehr. Rev. Sci. Instrum. 39, 649 (1968).CrossRefGoogle Scholar
  31. 31.
    Hopmann, R. Ber. Bunsenges. Phys. Chem. 74, 935 (1970).Google Scholar
  32. 32.
    Ilgenfritz, G. Dissertation. Göttingen (1966).Google Scholar
  33. 33.
    Johnson, G. S. Advances in Magnetic Resonance. Vol. 1, Chap. 2. (Ed.: J. Waugh). Academic Press: New York (1965).Google Scholar
  34. 34.
    Jost, A. Ber. Bunsenges. Phys. Chem. 70, 1057 (1966).Google Scholar
  35. 35.
    Kalidas, C., W. Knoche and D. Papadopoulos. Ber. Bunsenges. Phys. Chem. 75, 106 (1971).Google Scholar
  36. 36.
    Kirschner, K., E. Gallego, I. Schuster and D. Goodall. J. Molec. Biol 58, 29 (1971).CrossRefGoogle Scholar
  37. 37.
    Knoche, W. ‘Technique of Chemistry’, in Investigations of Rates and Mechanisms, Part II, Chap. V. (Eds.: A. Weissberger and G. G. Hammes), Interscience: New York (1973).Google Scholar
  38. 38.
    Koffer, H. Ber. Bunsenges. Phys. Chem. 75, 1245 (1971).Google Scholar
  39. 39.
    Koshland, D. E., G. Nemethy and D. Filmer. Biochemistry, 5, 365 (1966).CrossRefGoogle Scholar
  40. 40.
    Kuehn, C. and W. Knoche. Trans. Faraday Soc. 67, 2101 (1971).CrossRefGoogle Scholar
  41. 41.
    Ljunggren, S. and O. Lamm. Acta Chem. Scand. 12, 1834 (1958).CrossRefGoogle Scholar
  42. 42.
    Monod, J., J. Wyman and P. Changeux. J. Molec. Biol 12, 88 (1965).CrossRefGoogle Scholar
  43. 43.
    Noyés, M. and A. Weiler. Technique of Organic Chemistry, Vol. 8, Pt 2, Chap. 16. (Eds.: S. L. Friess, E. S. Lewis and A. Weissberger). Interscience: New York (1963).Google Scholar
  44. 44.
    Onsager, L. J. Chem. Phys. 2, 599 (1934).CrossRefGoogle Scholar
  45. 45.
    Pohl, F. M. Europ. J. Biochem. 4, 373 (1968).CrossRefGoogle Scholar
  46. 46.
    Porter, G. Technique of Organic Chemistry, Vol. 8, Pt 2, Chap. 19. (Eds.: S. L. Friess, E. S. Lewis and A. Weissberger). Interscience: New York (1963).Google Scholar
  47. 47.
    Rigler, R., C.-R. Rabl and T. M. Jovin, submitted for publication in Rev. Sci. Instrum. Google Scholar
  48. 48.
    Robinson, R. A. and R. H. Stokes. J. Amer. Chem. Soc. 76, 1991 (1954).CrossRefGoogle Scholar
  49. 49.
    Roughton, G. W. and B. Chance. Technique of Organic Chemistry, Vol. 8, Pt 2, Chap. 14. (Eds.: S. L. Friess, E. S. Lewis and A. Weissberger). Interscience: New York (1963).Google Scholar
  50. 50.
    Schwarz, G. J. Phys. Chem. 71, 4021 (1967).CrossRefGoogle Scholar
  51. 51.
    Schwarz, G. and J. Seeling. Biopolymers, 6, 1263 (1968).CrossRefGoogle Scholar
  52. 52.
    Strehlow, H. Technique of Organic Chemistry, ‘Investigations of Rates and Mechanisms’, Vol. 8, Pt 2, Chap. V (Eds.: S. L. Friess, E. S. Lewis and A. Weissberger). Interscience: New York (1963).Google Scholar
  53. 53.
    Strehlow, H. and M. Becker. Z. Elektrochem. 63, 457 (1959); ref. 41.Google Scholar
  54. 54.
    Strehlow, H. and J. Jen. Chem. Instrum. 3, 47 (1971).CrossRefGoogle Scholar
  55. 55.
    Strehlow, H. and S. Kalarickal. Ber, Bunsenges. Phys. Chem. 70, 139 (1966).Google Scholar
  56. 56.
    Swinehart, J. H. and G. W. Castellan. Org. Chemistry, 3, 278 (1964).Google Scholar
  57. 57.
    Weiler, A. In Progress in Reaction Kinetics, Vol. I, Chap. 7. (Ed.: G. Porter). Pergamon: New York (1961).Google Scholar
  58. 58.
    Wendt, H. Ber. Bunsenges. Phys. Chem. 70, 556 (1966).Google Scholar
  59. 59.
    Winkler, R. Dissertation. Göttingen-Wien (1969).Google Scholar

Copyright information

© Springer Science+Business Media New York 1968

Authors and Affiliations

  • H. Strehlow
    • 1
  • W. Knoche
    • 1
  1. 1.Max-Planck Institut für Biophysikalische ChemieGöttingenGermany

Personalised recommendations