Advertisement

Part 1. Melting Points and Volume Changes upon Melting

  • C.W.F.T. Pistorius

Abstract

The melting point of any pure substance, at any given pressure, can be simply defined as that temperature at which the Gibbs free energy of the solid and the liquid phases are equal. However, it is here necessary to make a distinction between a glass, a liquid, and a crystalline solid. Consider the relations between volume and temperature for a typical glass-forming substance shown in Figure 1.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

VII. References

  1. 1.
    Akimoto, S., E. Komada and I. Kushiro. J. Geophys. Res. 72, 679 (1967).Google Scholar
  2. 2.
    Alieva, P. Z. Trudy Inst. Metrol. D. I. Mendeleev No. 36, (96), 9 (1958).Google Scholar
  3. 3.
    Amagat, E. H. CR Acad. Sci., Paris, 105, 165 (1887).Google Scholar
  4. 4.
    Arens, P. L., A Study of the Differential Thermal Analysis of Clays and Clay Minerals, Excelsiors Foto-offset: S’Gravenhage, Holland (1951).Google Scholar
  5. 5.
    Babb, S. E., Jr. J. Chem. Phys. 37, 922 (1962).Google Scholar
  6. 6.
    Babb, S. E. Jr., P. E. Chaney and B. B. Owens. J. Chem. Phys. 41, 2210 (1964).Google Scholar
  7. 7.
    Balchan, A. S. and H. G. Drickamer. Rev. Sci. Instrum. 31, 511 (1960).Google Scholar
  8. 8.
    Balchan, A. S. and H. G. Drickamer. Rev. Sci. Instrum. 32, 308 (1961).Google Scholar
  9. 9.
    Barber, C. R. and A. Horsford. Proc. Roy. Soc. (London) A, 247, 214 (1958).Google Scholar
  10. 10.
    Barnett, J. and H. T. Hall. Rev. Sci. Instrum. 35, 175 (1964).Google Scholar
  11. 11.
    Barrali, E. M., R. S. Porter and J. F. Johnson. Molec. Cryst. 3, 299 (1968).Google Scholar
  12. 12.
    Barrali, E. M. and L. B. Rogers. Analyt. Chem. 34, 1106 (1962).Google Scholar
  13. 13.
    Barus, C. Bull. US Geol. Surv. No. 92 (1892).Google Scholar
  14. 14.
    Bassett, W., T. Takahashi and P. Stook. Rev. Sci. Instrum. 38, 37 (1967).Google Scholar
  15. 15.
    Birch, F, E. C. Robertson and S. P. Clark. Industr. Engng Chem. 49, 1965 (1957).Google Scholar
  16. 16.
    Bogue, R. H. The Chemistry of Portland Cement, p 237. Reinhold: New York (1947).Google Scholar
  17. 17.
    Boksha, S. S. and G. P. Shakhovskoi. Pribory i Tekh. Eksp. 3, 86 (1958).Google Scholar
  18. 18.
    Bowen, N. L. and J. F. Schairer. Amer. J. Sci. 24, 177 (1932).Google Scholar
  19. 19.
    Boyd, F. R. and J. L. England. J. Geophys. Res. 65, 741 (1960).Google Scholar
  20. 20.
    Boyd, F. R. and J. L. England. Yearb. Carnegie Instn, 62, 134 (1963).Google Scholar
  21. 21.
    Bradley, R., D. Munro and M. Whitfield. J. Sci. Instrum. 42, 714 (1965).Google Scholar
  22. 22.
    Bridgman, P. W. Proc. Amer. Acad. Arts Sci. 56, 61 (1921).Google Scholar
  23. 23.
    Bridgman, P. W. Proc. Amer. Acad. Arts Sci. 60, 385 (1925).Google Scholar
  24. 24.
    Bridgman, P. W. Phys. Rev. 46, 930 (1934).Google Scholar
  25. 25.
    Bridgman, P. W. Proc. Amer. Acad. Arts Sci. 71, 387 (1937).Google Scholar
  26. 26.
    Bridgman, P. W. The Physics of High Pressure, Bell: London (1949).Google Scholar
  27. 27.
    Bundy, F. P. Phys. Rev. 110, 314 (1958).Google Scholar
  28. 28.
    Bundy, F. P. Phys. Rev. 115, 274 (1959).Google Scholar
  29. 29.
    Bundy, F. P. Spec. Publ. US Nat. Bur. Stand. No. 326, 263 (1971).Google Scholar
  30. 30.
    Bunsen, R. Ann. Phys., Lpz. 81, 153 (1850).Google Scholar
  31. 31.
    Bunsen, R. Ann. Phys., Lpz. 141, 1 (1870).Google Scholar
  32. 32.
    Burgess, G. K. Sci. Pap. US Nat. Bur. Stand. No, 198, 205 (1920).Google Scholar
  33. 33.
    Butuzov, V. P. and M. G. Gonikberg. Dokl. Akad. Nauk SSSR, 91, 1083 (1953).Google Scholar
  34. 34.
    Butuzov, V. P., M. G. Gonikberg and S. P. Smirnov. Dokl. Akad. Nauk SSSR, 89, 651 (1953).Google Scholar
  35. 35.
    Butuzov, V. P., E. G. Ponyatovskii and G. P. Shakhovskoi. Dokl. Akad. Nauk SSSR, 109, 519 (1956).Google Scholar
  36. 36.
    Carpenter, H. C. H. Coll. Res. Nat. Phys. Lab., London, 2, 52 (1907).Google Scholar
  37. 37.
    Carpenter, H. C. H. and B. F. E. Keeling. J. Iron Steel Inst., London, 65, 224 (1904).Google Scholar
  38. 38.
    Chester, P. F. and J. S. Dugdale. Phys. Rev. 95, 278 (1954).Google Scholar
  39. 39.
    Churagulov, B. R., E. M. Feklichev, Ya. A. Kalashnikov and L. F. Vereshchagin. Dokl. Akad. Nauk. SSSR, 163, 629 (1965).Google Scholar
  40. 40.
    Clark, S. P., Jr, J. Chem. Phys. 31, 1526 (1959).Google Scholar
  41. 41.
    Cohen, L. H., W. Klement Jr and G. C. Kennedy. J. Phys. Chem. Solids, 27, 179 (1966).Google Scholar
  42. 42.
    Damien, B. C. CR Acad. Sci., Paris, 108, 1159 (1889).Google Scholar
  43. 43.
    Damien, B. C. CR Acad. Sci., Paris, 112, 785 (1891).Google Scholar
  44. 44.
    Darken, L. S. and R. W. Gurry. Physical Chemistry of Metals, 535 pp. McGraw-Hill: New York (1953).Google Scholar
  45. 45.
    Davis, B. and J. England. J. Geophys. Res. 69, 1113 (1964).Google Scholar
  46. 46.
    Deffet, L. Bull. Soc. Chim. Belg. 44, 41 (1935).Google Scholar
  47. 47.
    Deffet, L. Bull. Soc. Chim. Belg. 49, 223 (1940).Google Scholar
  48. 48.
    Dewar, J. Proc. Roy. Soc. (London), 30, 533 (1880).Google Scholar
  49. 49.
    Douglas, T. B. and W. H. Payne. ‘Physical properties of high-temperature materials. I. New apparatus for the precise measurement of heat content and heat capacity from 0° to 1500°C’, WADC Tech. Rep. No. 57–374, Part I; ASTIA Document No. AD 142119, 36 pp. (1957).Google Scholar
  50. 50.
    Dow, R. B. and H. B. Hibsham. J. Chem. Phys. 5, 960 (1937).Google Scholar
  51. 51.
    Dudley, J. D. and H. T. Hall. Phys. Rev. 118, 1211 (1960).Google Scholar
  52. 52.
    Dworkin, A. S. and M. A. Bredig. J. Phys. Chem. 64, 269 (1960).Google Scholar
  53. 53.
    Evans, J. P. and G. W. Burns, in Temperature, Vol. III, p 313. Edited by F. G. Brickwedde. Reinhold: New York (1962).Google Scholar
  54. 54.
    Foex, M. Bull. Soc. Chim. France, 137 (1962).Google Scholar
  55. 55.
    Foex, M. Solar Energy, 9, 61 (1965).Google Scholar
  56. 56.
    Foex, M. and J. Traverse. Bull. Soc. Franç. Minér. Cristallogr. 89, 184 (1966).Google Scholar
  57. 57.
    Foex, M. and J. Traverse. Rev. Hautes Temp. Réfract. 3, 429 (1966).Google Scholar
  58. 58.
    Foote, F. D., C. O. Fairchild and T. R. Harrison. Technol. Pap. US Nat. Bur. Stand. 14, 1–326 (1920).Google Scholar
  59. 59.
    Furukawa, G. J., T. B. Douglas, R. E. McCoskey and D. C. Ginnings. J. Res. Nat. Bur. Stand. 57, 67 (1956).Google Scholar
  60. 60.
    Giardini, A., J. E. Tydings and S. B. Levin. Amer. Mineral. 45, 217 (1960).Google Scholar
  61. 61.
    Gibson, R. E. J. Phys. Chem. 32, 1197 and 1206 (1928).Google Scholar
  62. 62.
    Ginnings, D. C. and R. J. Corruccini. J. Res. Nat. Bur. Stand. 38, 583 and 593 (1947); 39, 309 (1947).Google Scholar
  63. 63.
    Ginnings, D. C., T. B. Douglas and A. F. Ball. J. Res. Nat. Bur. Stand. 45, 23 (1950).Google Scholar
  64. 64.
    Gitlesen, G. and K. Motzfeldt. Rev. Hautes Temp. Réfract. 3, 343 (1966).Google Scholar
  65. 65.
    Glasgow, A. R. Jr, A. J. Streiff and F. D. Rossini. J. Res. Nat. Bur. Stand. 35, 355 (1945).Google Scholar
  66. 66.
    Gonikberg, M., D. Tsiklis and A. Opekunov. Dokl. Akad. Nauk SSSR, 129, 88 (1959).Google Scholar
  67. 67.
    Göranson, R. W. and F. C. Kracek. J. Phys. Chem. 36, 913 (1932).Google Scholar
  68. 68.
    Göranson, R. W. and F. C. Kracek. J. Chem. Phys. 3, 87 (1935).Google Scholar
  69. 69.
    Green, H. S., ‘The structure of liquids’, in S. Flügge (Ed.), Encyclopedia of Physics, Vol. X, pp 1–133. Springer: Berlin (1960).Google Scholar
  70. 70.
    Griggs, D. and G. C. Kennedy. Amer. J. Sci. 254, 722 (1956).Google Scholar
  71. 71.
    Grimshaw, R. W., E. Heaton and A. L. Roberts. Trans. Brit. Ceram. Soc. 44, 76 (1945).Google Scholar
  72. 72.
    Gutt, W. J. Sci. Instrum. 41, 393 (1964).Google Scholar
  73. 73.
    Hall, H. T. J. Phys. Chem. 59, 1144 (1955).Google Scholar
  74. 74.
    Hall, H. T. Rev. Sci. Instrum. 29, 267 (1958).Google Scholar
  75. 75.
    Hall, H. T. Rev. Sci. Instrum. 31, 125 (1960).Google Scholar
  76. 76.
    Hannemann, R. E., H. M. Strong and F. P. Bundy. Spec. Publ. US Nat. Bur. Stand. No 326Spec. Publ. US Nat. Bur. Stand. No 326, 53 (1971).Google Scholar
  77. 77.
    Harvey, A. E., Jr, M. T. Edmison, E. D. Jones, R. A. Seybert and K. A. Catto. J. Amer. Chem. Soc. 76, 3270 (1954).Google Scholar
  78. 78.
    Hoffmann, F. and R. Rothe. Z. InstrumKde, 25, 273 (1905).Google Scholar
  79. 79.
    Hoffmann, F. and R. Rothe. Z. Phys. Chem. 55, 113 (1906).Google Scholar
  80. 80.
    Hoffmann, F. and R. Rothe. Z. Phys. Chem. 59, 448 (1907).Google Scholar
  81. 81.
    Horie, Y. J. Phys. Chem. Solids, 28, 1569 (1967).Google Scholar
  82. 82.
    Hsu, L. J. Geophys. Res. 72, 4235 (1967).Google Scholar
  83. 83.
    Jaffray, J. J. Rech. CNRS, 153 (1947).Google Scholar
  84. 84.
    Jayaraman, A. Phys. Rev. 135A, 1056 (1964).Google Scholar
  85. 85.
    Jessup, R. S. J. Res. Nat. Bur. Stand. 55, 317 (1955).Google Scholar
  86. 86.
    Johnson, D. and P. Heydemann. Rev. Sci. Instrum. 38, 1294 (1967).Google Scholar
  87. 87.
    Jones, G. Glass, Methuen: London (1956).Google Scholar
  88. 88.
    Kats, G. and I. Ryabchikov. Izvest. Akad. Nauk SSSR, Ser. Geol 5, 121 (1968).Google Scholar
  89. 89.
    Kennedy, G. C., A. Jayaraman and R. C. Newton. Phys. Rev. 126, 1363 (1962).Google Scholar
  90. 90.
    Kennedy, G. C. and P. N. LaMori in Progress in Very High Pressure Research, edited by F. P. Bundy, W. R. Hibbard and H. M. Strong. Wiley: New York (1961).Google Scholar
  91. 91.
    Kennedy, G. C. and P. N. LaMori. J. Geophys. Res. 67, 851 (1962).Google Scholar
  92. 92.
    Kennedy, G. C. and R. C. Newton in Solids under Pressure, edited by W. Paul and D. M. Warschauer. McGraw-Hill: New York (1963).Google Scholar
  93. 93.
    Khitarov, N. T. and A. B. Slutskii. J. Chim. Phys. 64, 1085 (1967).Google Scholar
  94. 94.
    Klement, W., A. Jayaraman and G. C. Kennedy. Phys. Rev. 131, 1 (1963).Google Scholar
  95. 95.
    Kracek, F. C. J. Phys. Chem. 33, 1281 (1929).Google Scholar
  96. 96.
    Kracek, F. C. Trans. Amer. Geophys. Union, 27, 364 (1946).Google Scholar
  97. 97.
    Kuriakose, A. K. and E. Whalley. J. Chem. Phys. 48, 2025 (1968).Google Scholar
  98. 98.
    Kushiro, I, Y. Syono and S. Akimoto. J. Geophys. Res. 73, 6023 (1968).Google Scholar
  99. 99.
    LaMori, P. N., ‘Compressibility of rocks and minerals to 450°C and 36 kb and their application to the upper mantle’, Ph.D. Thesis, Northwestern University, 205 pp (1967).Google Scholar
  100. 100.
    LaMori, P. N. Spec. Publ. US Nat. Bur. Stand. No. 326, 279 (1971).Google Scholar
  101. 101.
    Landolt, H. Z. Phys. Chem. 11, 349 (1889).Google Scholar
  102. 102.
    Lees, J. and B. H. J. Williamson. Nature, London, 208, 278 (1965).Google Scholar
  103. 103.
    Leger, J. M., C. Susse and B. Vodar. Spec. Publ. US Nat. Bur. Stand. No. 326, 251 (1971).Google Scholar
  104. 104.
    Levin, E. M., C. R. Robbins and H. F. McMurdie. Phase Diagrams for Ceramists, 601 pp. American Ceramic Society: Columbus, Ohio (1964).Google Scholar
  105. 105.
    Lindsley, D. Amer. Mineral. 51, 1793 (1966).Google Scholar
  106. 106.
    Lisman, J. H. C. Smeltlijnen van Gecondenseerde Gassen. Eduard Ijdo: Leiden (1934).Google Scholar
  107. 107.
    Lloyd, E., U. O. Hutton and D. Johnson. J. Res. Nat. Bur. Stand. 63C, 59 (1959).Google Scholar
  108. 108.
    Lovejoy, D. R. in Temperature, Vol. III, p 487. Edited by F. G. Brickwedde. Reinhold: New York (1962).Google Scholar
  109. 109.
    Mack, E., CR Acad. Sci., Paris, 121, 361 (1898).Google Scholar
  110. 110.
    Mastrangelo, S. V. R. and R. W. Dornte. J. Amer. Chem. Soc. 11, 6200 (1955).Google Scholar
  111. 111.
    McCullough, J. P. and D. W. Scott (Eds.), Experimental Thermodynamics, Vol. I: Calori-metry of Non-reacting Systems, 606 pp. Butterworths: London (1968).Google Scholar
  112. 112.
    McDaniel, M. L., S. E. Babb Jr and G. J. Scott. J. Chem. Phys. 37, 833 (1962).Google Scholar
  113. 113.
    McLaren, E. H., Canad. J. Phys. 35, 1086 (1957).Google Scholar
  114. 114.
    McLaren, E. H., Canad. J. Phys. 36, 585 (1958).Google Scholar
  115. 115.
    McLaren, E. H., Canad. J. Phys. 36, 1131 (1958).Google Scholar
  116. 116.
    McLaren, E. H. in Temperature, Vol. III, p 185, edited by F. G. Brickwedde. Reinhold: New York (1962).Google Scholar
  117. 117.
    McLaren, E. H. and E. G. Murdock, Canad. J. Phys. 38}, 100 (196Google Scholar
  118. 118.
    McLaren, E. H. and E. G. Murdock, Canad. J. Phys. 38}, 577 (196Google Scholar
  119. 119.
    McNamara, E. P., Ceramics, 350 pp. Pennsylvania State University Press: State College, Pennsylvania, (1949).Google Scholar
  120. 120.
    McQueen, R. G, W. J. Carter, J. N. Fritz and S. P. Marsh. Spec. Publ. US Nat. Bur. Stand. No. 326, 219 (1971).Google Scholar
  121. 121.
    Michels, A., B. Blaisse and J. Hoohschagen. Physica, 9, 565 (1942).Google Scholar
  122. 122.
    Mills, R. L. and E. R. Grilly. Phys. Rev. 99, 480 (1955).Google Scholar
  123. 123.
    Mishin, V. P. and A. I, Garbuzov. Biokhimiya, 16, 416 (1951).Google Scholar
  124. 124.
    Muan, A., J. Metals, 7, 965 (1955).Google Scholar
  125. 125.
    Newhall, D. H., L. H. Abbot and R. A. Dunn, in High-pressure Measurement, Edited by A. A. Giardini and E. C. Lloyd. Butterworths: Washington (1962).Google Scholar
  126. 126.
    Partington, J. R., An Advanced Treatise on Physical Chemistry, Vol. III, pp 461 et seq. Longmans, Green: London (1952).Google Scholar
  127. 127.
    Pask, J. A. and M. F. Warner. Bull Amer. Ceram. Soc. 33, 168 (1954).Google Scholar
  128. 128.
    Penther, C. J., S. T. Abrams and F. H. Stross. Analyt. Chem. 23, 1459 (1951).Google Scholar
  129. 129.
    Perez-Albuerne, E., K. Forsgren and H. Drickamer. Rev. Sci. Instrum. 35, 29 (1964).Google Scholar
  130. 130.
    Pistorius, C. W. F. T, J. Phys. Chem. Solids, 26, 1543 (1965).Google Scholar
  131. 131.
    Pistorius, C. W. F. T, J. Phys. Chem. Solids, 28, 1811 (1967).Google Scholar
  132. 132.
    Pistorius, C. W. F. T. and J. B. Clark. High Temp. High Press. 1, 561 (1969).Google Scholar
  133. 133.
    Pistorius, C. W. F. T., M. C. Pistorius, J. P. Blakey and L. J. Admiraal. J. Chem. Phys. 38, 600 (1963).Google Scholar
  134. 134.
    Pistorius, C. W. F. T., E. Rapoport and J. B. Clark. Rev. Sci. Instrum. 38, 1741 (1967).Google Scholar
  135. 135.
    Pistorius, C. W. F. T., E. Rapoport and J. B. Clark. J. Chem. Phys. 48, 5509 (1968).Google Scholar
  136. 136.
    Predel, B. and I. Arpshofen. Z. Naturf. 23a, 2052 (1968).Google Scholar
  137. 137.
    Rankin, G. A. and F. E. Wright. Amer. J. Sci.Amer. J. Sci. 39, 1 (1915).Google Scholar
  138. 138.
    Rapoport, E. J. Chem. Phys. 45, 2721 (1966).Google Scholar
  139. 139.
    Riley, B. J. Sci. Instrum. 41, 504 (1964).Google Scholar
  140. 140.
    Riley, B. Rev. Hautes Temp. Réfract. 3, 327 (1966).Google Scholar
  141. 141.
    Ringwood, A. and A. Major. Earth Planet. Sci. Lett. 1, 241 (1966).Google Scholar
  142. 142.
    Roberts-Austen, W. C. Proc. Inst. Mech. Engrs, London, 1, 35 (1899).Google Scholar
  143. 143.
    Saladin, E. Iron Steel Metall. Metallogr. 7, 237 (1904).Google Scholar
  144. 144.
    Samara, G., A. Henius and A. Giardini. J. Bas. Engng, 729 (1964).Google Scholar
  145. 145.
    Schairer, J. F. in Physicochemical Measurements at High Temperatures, p 117. Edited by J. Bockris, J. L. White and J. D. MacKenzie. Butterworths: London (1959).Google Scholar
  146. 146.
    Schinke, H. and F. Sauerwald. Z. Anorg. Allg. Chem. 287, 313 (1956).Google Scholar
  147. 147.
    Schneider, S. J. Spec. Publ. US Nat. Bur. Stand. No. 303, 19 (1969).Google Scholar
  148. 148.
    Schneider, S. J. and C. L. McDaniel. J. Res. Nat. Bur. Stand. 71A, 317 (1967).Google Scholar
  149. 149.
    Schneider, S. J. and J. L. Waring. J. Res. Nat. Bur. Stand. 67A, 19 (1963).Google Scholar
  150. 150.
    Scott, R. B., G. H. Meyers, R. D. Rands Jr, F. G. Brickwedde and N. Bekkedahl. J. Res. Nat. Bur. Stand. 35, 39 (1945).Google Scholar
  151. 151.
    Sharp, W. E. J. Geophys. Res. 74, 1645 (1969).Google Scholar
  152. 152.
    Shepherd, E. S., G. A. Rankin and F. E. Wright. Amer. J. Sci. 28, 293 (1909).Google Scholar
  153. 153.
    Shimada, M. Spec. Contrib. Geophys. Inst. Kyoto Univ. 6, 303 (1966).Google Scholar
  154. 154.
    Simon, F., M. Ruhemann and W. Edwards. Z. Phys. Chem. B6, 331 (1930).Google Scholar
  155. 155.
    Skinner, J, E. Cussler and R. Fuoss. J. Chem. Phys. 72, 1057 (1968).Google Scholar
  156. 156.
    Slutskii, A. B. Eksperimen. Issled. v Oblasti Glubinnykh Protsessov, Inst. Geokhim. i Analit. Khim., Akad. Nauk SSSR, Materialy Simpoziuma, 212 (1960).Google Scholar
  157. 157.
    Smothers, W. J. and Y. Chiang. Differential Thermal Analysis: Theory and Practice. Chemical Publishing Co.: New York (1958).Google Scholar
  158. 158.
    Smyth, H. T. J. Amer. Ceram. Soc. 34, 221 (1951).Google Scholar
  159. 159.
    Southard, J. C. and F. G. Brickwedde. J. Amer. Chem. Soc. 55, 4378 (1933).Google Scholar
  160. 160.
    Spindler, H. and F. Sauerwald. Z. Anorg. Allg. Chem. 335, 267 (1965).Google Scholar
  161. 161.
    Statton, W. O. J. Chem. Phys. 19, 33 (1951).Google Scholar
  162. 162.
    Sterrett, K. F., W. Klement Jr and G. C. Kennedy. J. Geophys. Res. 70, 1979 (1965).Google Scholar
  163. 163.
    Stevels, J. M. ‘The structure and the physical properties of glass’, in S. Flügge (Ed.), Encyclopedia of Physics, Vol. XIII, pp 510–645. Springer: Berlin (1962).Google Scholar
  164. 164.
    Strong, H. M. J. Geophys. Res. 64, 653 (1959).Google Scholar
  165. 165.
    Strong, H. M. in Progress in Very High Pressure Research, p 182. Edited by F. P. Bundy, W. R. Hibbard and H. M. Strong. Wiley: New York (1961).Google Scholar
  166. 166.
    Strong, H. M. and F. P. Bundy. Phys. Rev. 115, 278 (1959).Google Scholar
  167. 167.
    Strong, H. M. and F. P. Bundy. Spec. Publ. US Nat. Bur. Stand. No. 326, 283 (1971).Google Scholar
  168. 168.
    Susse, C. and R. Epain. CR Acad. Sci., Paris, 259, 3756 (1964).Google Scholar
  169. 169.
    Susse, C., R. Epain and B. Vodar. CR Acad. Sci., Paris, 258, 4513 (1964).Google Scholar
  170. 170.
    Tammann, G. Aggregatszustände. Voss: Leipzig (1922).Google Scholar
  171. 171.
    Tanaka, S. Bull. Chem. Soc. Japan, 38, 795 (1965).Google Scholar
  172. 172.
    Taylor, W. J. and F. D. Rossini. J. Res. Nat. Bur. Stand. 32, 197 (1944).Google Scholar
  173. 173.
    van Tets, A. and H. G. Wiedemann, in Thermal Analysis, Vol. I, p 121, edited by R. Schwenker and P. Garn. Academic Press: New York (1969).Google Scholar
  174. 174.
    Thomson, W. Ann. Phys., Lpz. 81, 163 (1850).Google Scholar
  175. 175.
    Treiman, L. H. in Temperature, Vol III, p 523, edited by F. G. Brickwedde. Reinhold: New York (1962).Google Scholar
  176. 176.
    Tsiklis, D. S. Handbook of Techniques in High-pressure Research and Engineering. Plenum: New York (1968).Google Scholar
  177. 177.
    van Valkenburg, A. Rev. Sci. Instrum. 33, 1462 (1962).Google Scholar
  178. 178.
    Vereshchagin, L., A. Semerchan, N. Kuzin and Y. Sadkov. Dokl. Akad. Nauk SSSR, 183, 565 (1968).Google Scholar
  179. 179.
    Vereshchagin. L., V. Galaktionov, A. Semerchan and V. Slesarev. Dokl. Akad. Nauk SSSR, 132, 1059 (1960).Google Scholar
  180. 180.
    Weber, R. L. Heat and Temperature Measurement, 422 pp. Prentice-Hall: New York (1950).Google Scholar
  181. 181.
    Welch, J. H. J. Sci. Instrum. 31, 458 (1954).Google Scholar
  182. 182.
    Welch, J. H. J. Sci. Instrum. 38, 402 (1961).Google Scholar
  183. 183.
    Welch, J. H. and W. Gutt. J. Amer. Ceram. Soc. 42, 11 (1959).Google Scholar
  184. 184.
    West, E. D. and D. C. Ginnings. Rev. Sci. Instrum. 28, 1070 (1957).Google Scholar
  185. 185.
    West, E. D. and D. C Ginnings. J. Res. Nat. Bur. Stand. 60, 309 (1958).Google Scholar
  186. 186.
    Wilson, W. Rev. Sci. Instrum. 31, 331 (1960).Google Scholar
  187. 187.
    Yoder, H. S. Trans. Amer. Geophys. Union, 31, 827 (1950).Google Scholar
  188. 188.
    Yoder, H. S. J. Geol. 60, 367 (1952).Google Scholar
  189. 189.
    Zhokhovskii, M. K., Y. S. Konyaev and V. G. Levchenko. Pribory i Tekh. Eksp. 118–22 (1959).Google Scholar

Copyright information

© Springer Science+Business Media New York 1968

Authors and Affiliations

  • C.W.F.T. Pistorius
    • 1
  1. 1.Chemical Physics Group of the National Physical and National Chemical Research LaboratoriesSouth African Council for Scientific and Industrial ResearchPretoriaSouth Africa

Personalised recommendations