Advertisement

Part 1. Phase Equilibria of Two-component Systems and Multicomponent Systems

  • A.G. Williamson

Abstract

The main concern in the study of phase equilibria in multicomponent fluid systems is in determining the compositions of the phases when values have been assigned to sufficient variables to establish a thermodynamically well-defined state. The number of variables to which values must be assigned can be described in terms of the phase rule28. If we ignore, as we usually may, gravity, electric and magnetic fields and surface forces, the phase rule takes the form
$$\textup{P} + \textup{F} = \textup{C} + 2$$
where P is the number of phases, F is the number of degrees of freedom, and C is the number of components. For systems of the type to be discussed here, in which no chemical reactions take place, the number of components is simply the number of chemically distinguishable species. The number of degrees of freedom is the number of intensive variables required to fix the thermodynamic state of the system. The variables of interest are usually the temperature, pressure and the compositions of the phases.

List of Symbols The following symbols have the meanings listed:

p

pressure

T

temperature

μi

chemical potential of component i

V

volume

ni

number of moles of component i

G

Gibbs free energy

si

partial molai entropy of component i

hi

partial molai enthalpy of component i

yi,xi

mole fraction of component i

p*

fugacity

Vi°

molar volume of pure component i

Bii

second virial coefficient of component i

Bij

mixture second virial for interaction between components i and j

γi

activity coefficient of component i

GE

excess Gibbs free energy of mixing

HE

enthalpy of mixing

μiE

excess chemical potential of component i

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

XIII. References

  1. 1.
    Allen, G, D. H. Everett and F. M. Penney. Froc. Roy. Soc. A, 212, 149 (1952).CrossRefGoogle Scholar
  2. 2.
    Ashworth, A. J. and D. H. Everett. Trans. Faraday Soc. 56, 1609 (1960).CrossRefGoogle Scholar
  3. 3.
    Barker, J. A. Austral. J. Chem. 6, 207 (1953).CrossRefGoogle Scholar
  4. 4.
    Battino, R. Chem. Rev. 71, 5 (1971).CrossRefGoogle Scholar
  5. 5.
    Battino, R. and F. D. Evans. Analyt. Chem. 38, 1627 (1966)CrossRefGoogle Scholar
  6. 5a.
    Battino, R., F. D. Evans and M. Bogan. Analyt. Chim. Acta, 43, 518 (1968)CrossRefGoogle Scholar
  7. 5b.
    Battino, R., M. Banzhof, M. Bogan and E. Wilhelm. Analyt. Chem. 43, 806 (1971).CrossRefGoogle Scholar
  8. 6.
    Baxendale, J. H., B. V. Enüstün and J. Stern. Phil. Trans. Roy. Soc. A, 243,169 (1951).CrossRefGoogle Scholar
  9. 7.
    Bell, T. N., E. L. Cussler, K. R. Harris, C. N. Pepela and P. J. Dunlop. J. Phys. Chem. 72, 4693 (1968).CrossRefGoogle Scholar
  10. 8.
    Bottomley, G. A. and C. G. Reeves. Trans. Faraday Soc. 53, 1455 (1957).CrossRefGoogle Scholar
  11. 9.
    Bronsted, I. J. N. and J. Koefoed. Mat.-Fys. Medd., Danske Vid. Selsk, 2, No. 17 (1946).Google Scholar
  12. 10.
    Brown, I. Austral. J. Sci. Res. A5, 530 (1952).Google Scholar
  13. 11.
    Christian, S. D., H. E. Affsprung and J. R. Johnson. J. Chem. Soc. London, 1896 (1963).Google Scholar
  14. 12.
    Conder, J. R. and J. H. Purnell. Trans. Faraday Soc. 64, 1505 (1968); 64, 3100 (1968); 65, 825 (1969); 65, 839 (1969).CrossRefGoogle Scholar
  15. 13.
    Corneliussen, R., S. A. Rice and H. Yamakawa. J. Chem. Phys. 38, 1768 (1963).CrossRefGoogle Scholar
  16. 14.
    Cottrell, F. G. J. Amer. Chem. Soc. 41, 721 (1919).CrossRefGoogle Scholar
  17. 15.
    Coumou, D. S. and E. L. Mackor. Trans. Faraday. Soc. 60, 1539 (1964); 60, 1726 (1964).CrossRefGoogle Scholar
  18. 16.
    Cruickshank, A. J. B., M. L. Windsor and C. L. Young. Proc. Roy. Soc. London, A, 295, 259 and 271 (1966)CrossRefGoogle Scholar
  19. 17.
    Dastur, S. P. and G. Thodos. Chem. Engng Sci. 19, 935 (1964).CrossRefGoogle Scholar
  20. 18.
    Dixon, D. T. and M. L. McGlashan. Nature, London, 206, 710 (1965).CrossRefGoogle Scholar
  21. 19.
    Dunlap, R. D., R. G. Bedford, J. C. Woodbrey and S. D. Furrow. J. Amer. Chem. Soc. 81, 2927 (1959).CrossRefGoogle Scholar
  22. 20.
    Ellis, S. R. M. Trans. Inst. Chem. Engrs, London, 30, 58 (1952).Google Scholar
  23. 21.
    Everett, D. H. and C. T. H. Stoddart. Trans. Faraday, Soc. 57, 746 (1961).CrossRefGoogle Scholar
  24. 22.
    Everett, D. H. and W. I. Whitton. Proc. Roy. Soc. A, 230, 91 (1955).CrossRefGoogle Scholar
  25. 23.
    Fowler, R. J. The Industrial Chemist. 713 (November 1948) and 824 (December 1948).Google Scholar
  26. 24.
    Freeguard, G. F. and R. Stock. Gas Chromatography, p 103. Butterworths: London (1962).Google Scholar
  27. 25.
    Gillespie, D. T. C. Industr. Engng Chem. (Analyt.) 18, 575 (1946).CrossRefGoogle Scholar
  28. 26.
    Guggenheim, E. A. Trans. Faraday Soc. 33, 151 (1937).CrossRefGoogle Scholar
  29. 27.
    Guggenheim, E. A. Thermodynamics, 3rd ed. p 215–7. North Holland: Amsterdam (1957).Google Scholar
  30. 28.
    Guggenheim, E. A. Thermodynamics, 3rd ed., p 230–1. North Holland: Amsterdam (1957).Google Scholar
  31. 29.
    Guggenheim, E. A. Thermodynamics, 3rd ed., p 250 et seq. North Holland: Amsterdam (1957).Google Scholar
  32. 30.
    Hermsen, R. W. and J. M. Prausnitz. Chem. Engng Sci. 18, 485 (1963).CrossRefGoogle Scholar
  33. 31.
    Herrington, E. F. G. J. Appl. Chem. 18, 285 (1968).CrossRefGoogle Scholar
  34. 32.
    Herrington, E. F. G. Instn Chem. Engrs Symposium Series, 32, 3 and 17 (1969).Google Scholar
  35. 33.
    Hildebrand, J. H. Solubility of Non-electrolytes, 3rd ed., p 149. Reinhold: New York (1950).Google Scholar
  36. 34.
    Hill, T. L. Introduction to Statistical Thermodynamics, p 81. Addison-Wesley: London (1960).Google Scholar
  37. 35.
    Judd, N. F. and M. L. McGlashan. Private communication.Google Scholar
  38. 36.
    Katz, D. L. and F. Kurata. Industr. Engng Chem. 32, 817 (1940).CrossRefGoogle Scholar
  39. 37.
    Kay, N. B. and G. M. Ranbosch. Industr. Engng Chem. 45, 221 (1953).CrossRefGoogle Scholar
  40. 38.
    Kershaw, R. W. and G. N. Malcolm. Trans. Faraday Soc. 64, 323 (1968).CrossRefGoogle Scholar
  41. 39.
    Kretschmer, C. B., J. Nakowska and R. Weibe. J. Amer. Chem. Soc. 70, 1785 (1948).CrossRefGoogle Scholar
  42. 40.
    van Laar, J. J. Z. Phys. Chem. 72, 723 (1910).Google Scholar
  43. 41.
    Langer, S. H. and J. H. Purnell. J. Phys. Chem. 67, 263 (1963).CrossRefGoogle Scholar
  44. 42.
    Malcolm, G. N. and R. W. Kershaw. Trans. Faraday Soc. 64, 323 (1968).CrossRefGoogle Scholar
  45. 43.
    Malcolm, G. N. and J. S. Rowlinson. Trans. Faraday Soc. 53, 921 (1957).CrossRefGoogle Scholar
  46. 44.
    Margules, M. SB Akad. Wiss. Wien. Math.-Nat. Kl. [2], 104, 1243 (1895).Google Scholar
  47. 45.
    Marsh, K. N., Trans. Faraday Soc. 64, 883 (1968).CrossRefGoogle Scholar
  48. 46.
    Martin, A. J. P. Analyst, 81, 52 (1956).CrossRefGoogle Scholar
  49. 47.
    Martire, D. E., R. L. Pecsok and J. H. Purneil. Trans. Faraday Soc. 61, 2496 (1965).CrossRefGoogle Scholar
  50. 48.
    Mathot, V. and A. Desmyter. J. Chem. Phys. 21, 782 (1953).CrossRefGoogle Scholar
  51. 49.
    McBain, J. W. and A. M. Bakr. J. Amer. Chem. Soc. 48, 690 (1926).CrossRefGoogle Scholar
  52. 50.
    McDermott, C. and S. R. M. Ellis. Chem. Engng. Sci. 20, 545 (1965).CrossRefGoogle Scholar
  53. 51.
    McGlashan, M. L. Experimental Thermochemistry, Vol. II, Chap. 15, Interscience: New York (1962).Google Scholar
  54. 52.
    McGlashan, M. L., J. E. Prue and J. E. J. Sainsbury. Trans. Faraday Soc. 50, 1284 (1954).CrossRefGoogle Scholar
  55. 53.
    McGlashan, M. L. and A. G. Williamson. Trans. Faraday Soc. 57, 588 (1961).CrossRefGoogle Scholar
  56. 54.
    Mendelssohn, K. The Quest for Absolute Zero. Weidenfeld and Nicolson: London (1966).Google Scholar
  57. 55.
    Myers, D. B. and R. L. Scott. Industr. Engng Chem. 55, 43 (1963).CrossRefGoogle Scholar
  58. 56.
    Myers, R. S. and H. L. Clever. J. Chem. Thermodyn. 2, 53 (1970).CrossRefGoogle Scholar
  59. 57.
    Prausnitz, J. M. Molecular Thermodynamics of Fluid Phase Equilibria, p 229. Prentice Hall: New Jersey (1969)Google Scholar
  60. 57a.
    Orye, R. V. and J. M. Prausnitz. Industr. Engng Chem. 57, 19 (1965).CrossRefGoogle Scholar
  61. 58.
    Pressure measurement, see chapter 4 in this volume, p 115.Google Scholar
  62. 59.
    Prigogine, I. and A. Desmyter. Trans. Faraday Soc. 47, 1137 (1951).CrossRefGoogle Scholar
  63. 60.
    Redlich, O. and A. T. Kister. Industr. Engng Chem. 40, 341–5 (1948).CrossRefGoogle Scholar
  64. 61.
    Renon, H. and J. M. Prausnitz. A.I.Ch.E. Journal, 14, 135 (1968).CrossRefGoogle Scholar
  65. 62.
    Robinson, R. H. and D. A. Sinclair. J. Amer. Chem. Soc. 56, 561 and 830 (1934); Stokes, R. H. J. Amer. Chem. Soc. 69, 1291 (1947).CrossRefGoogle Scholar
  66. 63.
    Rogers, B. L. and J. M. Prausnitz. Industr. Engng Chem. (Fundamentals), 9, 174 (1970).CrossRefGoogle Scholar
  67. 64.
    Rowlinson, J. S. Liquids and Liquid Mixtures, 2nd ed., p 219. Butterworths: London (1969).Google Scholar
  68. 65.
    Sameshima, J. J. Amer. Chem. Soc. 40, 1483 (1918).Google Scholar
  69. 66.
    Scatchard, G. Chem. Rev. 44, 7 (1949).CrossRefGoogle Scholar
  70. 67.
    Scatchard, G., C. L. Raymond and H. H. Gilman. J. Amer. Chem. Soc. 60, 1275 (1938).CrossRefGoogle Scholar
  71. 68.
    Scatchard, G. and L. B. Tichnor. J. Amer. Chem. Soc. 74, 3724 (1952).CrossRefGoogle Scholar
  72. 69.
    Scatchard, G., G. M. Wilson and F. G. Satkiewicz. J. Amer. Chem. Soc. 86, 125 (1964).CrossRefGoogle Scholar
  73. 70.
    Scatchard, G., S. E. Wood and J. M. Mochel. J. Amer. Chem. Soc. 62, 712 (1940).CrossRefGoogle Scholar
  74. 71.
    Schneider, G., see Chapter 16 (Part 2) of this volume, p 787.Google Scholar
  75. 72.
    Sirianni, A. F. and I. E. Puddington. Canad. J. Chem. 33, 755 (1955).CrossRefGoogle Scholar
  76. 73.
    Stalkup, F. I. and H. A. Deans. A.I.Ch.E. Journal, 9, 108 (1963).Google Scholar
  77. 74.
    Stalkup, F. I. and R. Kobayashi. A.I.Ch.E. Journal, 9, 121 (1963).CrossRefGoogle Scholar
  78. 75.
    Taylor, J. B. and J. S. Rowlinson. Trans. Faraday Soc. 51, 1183 (1955).CrossRefGoogle Scholar
  79. 76.
    Temperature measurement, see Chapter 3 in this volume, p 87.Google Scholar
  80. 77.
    van der Waals, J. H., Thesis, University of Groningen (1950).Google Scholar
  81. 78.
    Watson, I. D., R. J. Knight, I. R. McKinnon and A. G. Williamson. Trans. Faraday Soc. 64, 1763 (1968).CrossRefGoogle Scholar
  82. 79.
    Wichterle, I. and E. Hála. Industr. Engng. Chem. (Fundamentals), 2, 155 (1963).CrossRefGoogle Scholar
  83. 80.
    Wilson, G. M, J. Amer. Chem. Soc. 86, 127 (1964).CrossRefGoogle Scholar
  84. 81.
    Yadorich, A., R. L. Robinson and K. C. Chao. A.I.Ch.E. Journal, 17, 1152 (1971).CrossRefGoogle Scholar
  85. 82.
    York, S. G., J. Sci. Instrum. 22, 196 (1954).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1968

Authors and Affiliations

  • A.G. Williamson
    • 1
  1. 1.Department of Chemical EngineeringUniversity of CanterburyChristchurch 1New Zealand

Personalised recommendations