Advertisement

Solubility

  • A. S. Kertes
  • O. Levy
  • G. Y. Markovits

Abstract

The solubility of a substance is the maximum amount of it which will dissolve in a given amount of solvent, at given pressure and temperature, yielding a homogeneous molecular or ionic dispersion. If solubility must be known accurately, it must be determined experimentally. There is no reliable way to calculate solubility from the physical and chemical properties of the pure compound. Quite frequently, however, there are criteria for the prediction of solubilities, based on creditable equations meeting the rigorous requirements of sound thermodynamic principles. While an ever-increasing reliance can be placed on theoretical calculations—as molecular data become available— it will not be possible to replace experiment with theory in the determination of solubilities. It is only fortunate that it is relatively easy to measure solubilities with adequate precision.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

VII. References

  1. 1.
    Akerlof, G. J. Amer. Chem. Soc. 57, 1196 (1935).Google Scholar
  2. 2.
    Alexejev, W. J. Prakt. Chem. 25, 518 (1882).Google Scholar
  3. 3.
    von Antropoff, A. Proc. Roy. Soc. A, 83, 474 (1910).Google Scholar
  4. 4.
    Ashton, J. T., R. A. Dave, K. W. Miller, E. B. Smith and B. J. Stickings, J. Chem. Soc. (A), 1793 (1968).Google Scholar
  5. 5.
    McAuliffe, C. Nature, London, 200, 1092 (1963).Google Scholar
  6. 6.
    Baldwin, R. R. and S. G. Daniel, J. Appl. Chem. 2, 161 (1951).Google Scholar
  7. 7.
    Battino, R. and H. L. Clever, Chem. Rev. 66, 395 (1966).Google Scholar
  8. 8.
    Battino, R. and E. Wilhelm, Chem. Rev. 73, 1 (1973).Google Scholar
  9. 9.
    Benjamin, L. and V. Gold, Trans. Faraday Soc. 50, 797 (1954).Google Scholar
  10. 10.
    Bell, J. M. and A. L. Field, J. Amer. Chem. Soc. 33, 1940 (1911).Google Scholar
  11. 11.
    Ben-Nairn, A. and S. Baer, Trans. Faraday Soc. 59, 2735 (1963).Google Scholar
  12. 12.
    Bennett, G. M. and W. G. Philip, J. Chem. Soc. 1928 (1930).Google Scholar
  13. 13.
    Benson, B. B. and P. D. M. Parker, J. Phys. Chem. 65, 1489 (1961).Google Scholar
  14. 14.
    Black, C., G. G. Joris and H. S. Taylor, J. Chem. Phys. 16, 537 (1948).Google Scholar
  15. 15.
    Bohon, R. L. and W. F. Claussen, J. Amer. Chem. Soc. 73, 1571 (1951).Google Scholar
  16. 16.
    Burrows, G. and F. H. Preece, J. Appl. Chem. 3, 451 (1953).Google Scholar
  17. 17.
    Cady, H. P., H. M. Elsey and E. V. Berger, J. Amer. Chem. Soc. 44, 1456 (1922).Google Scholar
  18. 18.
    Claussen, W. F. and M. F. Polglase, J. Amer. Chem. Soc. 74, 4817 (1952).Google Scholar
  19. 19.
    Cohen, E. and L. R. Sinnige, Z. Phys. Chem. 69, 102 (1909).Google Scholar
  20. 20.
    Cook, M. W. and D. N. Hanson, Rev. Sci. Instrum. 28, 370 (1957); Cook, M. W., D. N. Hanson and B. J. Aider. J. Chem. Phys. 2, 748 (1957).Google Scholar
  21. 21.
    Cox, J. D. and A. J. Head. Trans. Faraday Soc. 58, 1839 (1962).Google Scholar
  22. 22.
    Cruickshank, A. J. B., B. W. Gainey and C. L. Young, Trans. Faraday Soc. 64, 337 (1968).Google Scholar
  23. 23.
    Cukor, P. M. and J. M. Prausnitz, Industr. Engng Chem. (Fundamentals), 10, 638 (1971).Google Scholar
  24. 24.
    Douglas, E. J. Phys. Chem. 68, 169 (1964); 69, 2608 (1965).Google Scholar
  25. 25.
    Dundon, M. L. and W. E. Henderson, J. Amer. Chem. Soc. 44, 1196 (1922).Google Scholar
  26. 26.
    Dundon, M. L. and E. Mack Jr. J. Amer. Chem. Soc. 45, 2479 (1923).Google Scholar
  27. 27.
    Dymond, J. H. and J. H. Hildebrand. Industr. Engng Chem. (Fundamentals), 6, 130 (1967).Google Scholar
  28. 28.
    Elsev, P. G. Analyt. Chem. 31, 869 (1959).Google Scholar
  29. 29.
    Emerson, W. H. J. Amer. Chem. Soc. 29, 1750 (1907).Google Scholar
  30. 30.
    Evans, T.W. Industr. Engng Chem. (Anal. Ed.), 8, 206 (1936).Google Scholar
  31. 31.
    Ewins, A. G. J. Chem. Soc. 105, 350 (1914).Google Scholar
  32. 32.
    Flaschner, C. and B. McEven, J. Chem. Soc. 93, 1000 (1908).Google Scholar
  33. 33.
    Fowler, R. H. and E. A. Guggenheim, Statistical Thermodynamics, pp 355–358. Cambridge University Press: London (1960).Google Scholar
  34. 34.
    Fox, J. J. J. Chem. Soc. 95, 878 (1909).Google Scholar
  35. 35.
    Frear, G. L. and J. Johnston. J. Amer. Chem. Soc. 51, 2082 (1929).Google Scholar
  36. 36.
    Friedman, H. L. J. Amer. Chem. Soc. 76, 3294 (1954).Google Scholar
  37. 37.
    Gibson, R. E., J. Amer. Chem. Soc. 56, 864 (1934).Google Scholar
  38. 38.
    Gjaldbaek, J. C. Acta Chem. Scand. 6, 623 (1952).Google Scholar
  39. 39.
    Gjaldbaek, J. C. and J. H. Hildebrand. J. Amer. Chem. Soc. 72, 609 (1950).Google Scholar
  40. 40.
    Glew, D. H. and J. H. Hildebrand, J. Phys. Chem. 60, 616 (1956).Google Scholar
  41. 41.
    Gorodetskii, J. G., V. E. Skurat and V. L. Tal’rose, Russ. J. Phys. Chem. 44, 1049 (1970).Google Scholar
  42. 42.
    Groot, C. and J. H. Hildebrand. J. Amer. Chem. Soc. 70, 3815 (1948).Google Scholar
  43. 43.
    Heric, H. L. and C. D. Posey, J. Chem. Engng Data, 9, 35 (1964).Google Scholar
  44. 44.
    Heric, H. L. and C. D. Posey. J. Chem. Engng Data. 10, 25 (1965).Google Scholar
  45. 45.
    Hevesy, G. J. Phys. Chem. 16, 429 (1912).Google Scholar
  46. 46.
    Hevesy, G. and F. A. Paneth, Z. Anorg. Chem. 82, 322 (1913).Google Scholar
  47. 47.
    Hildebrand, J. H. and D. R. F. Cochran. J. Amer. Chem. Soc. 71, 22 (1949).Google Scholar
  48. 48.
    Hildebrand, J. H., E. T. Eleffson and C. W. Beebe. J. Amer. Chem. Soc. 39, 2297 and 2301 (1971).Google Scholar
  49. 49.
    Hildebrand, J. H., J. M. Prausnitz and R. L. Scott. Regular and Related Solutions, Van Nostrand: New York (1971).Google Scholar
  50. 50.
    Hildebrand, J. H. and R. L. Scott, Regular Solutions, Prentice Hall: Englewood Cliffs, N.J. (1962).Google Scholar
  51. 51.
    Hicks, C. P. and C. L. Young. Trans. Faraday Soc. 64, 2675 (1968).Google Scholar
  52. 52.
    Hill, A. E. J. Amer. Chem. Soc. 45, 1143 (1923).Google Scholar
  53. 53.
    Hill, A. E. and W. M. Malisoff. J. Amer. Chem. Soc. 48, 918 (1926).Google Scholar
  54. 54.
    Hoerr, C. W. and A. W. Ralston. J. Amer. Chem. Soc. 64, 2824 (1942).Google Scholar
  55. 55.
    Horiuti, J. Sci. Pap. Inst. Phys. Chem. Res., Tokyo, 17, 125 (1931).Google Scholar
  56. 56.
    Hu, J. H. and G. E’ MacWood, J. Phys. Chem. 60, 1483 (1956).Google Scholar
  57. 57.
    Huggins, M. L. J. Chem. Phys. 5, 143 (1937).Google Scholar
  58. 58.
    Hulett, A. Z. Phys. Chem. 37, 385 (1901).Google Scholar
  59. 59.
    Joris, G. G. and H. S. Taylor, J. Chem. Phys. 16, 45 (1948).Google Scholar
  60. 60.
    Kablunov, I. A. and V. T. Malischeva. J. Amer. Chem. Soc. 47, 1553 (1925).Google Scholar
  61. 61.
    Keyes, D. B. and J. H. Hildebrand. J. Amer. Chem. Soc. 39, 2126 (1917).Google Scholar
  62. 62.
    Klots, C. E. and B. B. Benson. J. Chem. Phys. 38, 890 (1963); Klots, C. E. and B. B. Benson. J. Marine Res. 21, 1 (1963).Google Scholar
  63. 63.
    Kobotake, Y. and J. H. Hildebrand. J. Phys. Chem. 65, 331 (1961).Google Scholar
  64. 64.
    Kolthoff, I. M. J. Phys. Chem. 35, 2711 (1931).Google Scholar
  65. 65.
    Kolthoff, I. M. and P. J. Elving. Treatise on Analytical Chemistry, Part I, Volume I. Wiley-Interscience: New York (1959).Google Scholar
  66. 66.
    Kolthoff, I. M. and C. Rosenblum. J. Amer. Chem. Soc. 56, 1264 (1934).Google Scholar
  67. 67.
    Kurkchi, G. A. and A. V. Jogansen. Dokl. Akad. Nauk SSSR, 145, 1085 (1962).Google Scholar
  68. 68.
    Lachowicz, S. K. J. Imp. Coll. Chem. Engng Soc. 8, 51 (1954).Google Scholar
  69. 69.
    Lannung, A. J. Amer. Chem. Soc. 52, 68 (1930).Google Scholar
  70. 70.
    Leighton, D. A. and J. B. Wilkins. J. Amer. Chem. Soc. 70, 2600 (1948).Google Scholar
  71. 71.
    Leussing, D. L. in ref. 65, p 675.Google Scholar
  72. 72.
    Lewis, G. N. and D. B. Keyes. J. Amer. Chem. Soc. 40, 472 (1918).Google Scholar
  73. 73.
    Linford, R. G. and J. H. Hildebrand. J. Phys. Chem. 73, 4410 (1969).Google Scholar
  74. 74.
    Loprest, F. J. J. Phys. Chem. 61, 1128 (1957).Google Scholar
  75. 75.
    Lowry, T. M. J. Chem. Soc. 85, 1555 (1904).Google Scholar
  76. 76.
    Mader, W. J., R. D. Vold and M. J. Vold. In Physical Methods in Organic Chemistry, 3rd ed., Part I, p. 655. Ed. A. Weissberger. Wiley-Interscience: New York (1959).Google Scholar
  77. 77.
    Marcus, Y., J. Shamir and J. Soriano. J. Phys. Chem. 74, 133 (1970).Google Scholar
  78. 78.
    Margrave, J. L. In Physicochemical Measurements at High Temperatures, p. 6. Edited by J. O’M. Bockris, J. L. White and J. D. Mackenzie. Butterworths: London (1959).Google Scholar
  79. 79.
    Markham, A. E. and K. A. Kobe. Chem. Rev. 28, 519 (1941).Google Scholar
  80. 80.
    Maxted, E. M. and C. H. Moon. Trans. Faraday Soc. 32, 769 (1936).Google Scholar
  81. 81.
    McDaniel, A. S. J. Phys. Chem. 15, 587 (1911).Google Scholar
  82. 82.
    McGlashan, M. L. and K. W. Morcom. Trans. Faraday Soc. 57, 581, 588 (1961).Google Scholar
  83. 83.
    Menzies, A. W. C. J. Amer. Chem. Soc. 58, 934 (1936).Google Scholar
  84. 84.
    Merriman, R. W. J. Chem. Soc. 103, 1774 (1913).Google Scholar
  85. 85.
    Miller, K. W. J. Phys. Chem. 72, 2248 (1968).Google Scholar
  86. 86.
    Moles, E. and E. Jimeno. Anal. Soc. Esp. Fis. Quim. 11, 393 (1913); Chem. Abstr. 9, 143 (1915).Google Scholar
  87. 87.
    Montgomery, H. A. C., N. S. Thorn and A. Cockburn. J. Appl. Chem. 14, 28 (1964).Google Scholar
  88. 88.
    Morrison, J. T. and F. Billett. J. Chem. Soc. 2033 (1948).Google Scholar
  89. 89.
    Motylewski, S. Z. Anorg. Chem. 38, 410 (1904).Google Scholar
  90. 90.
    Noyes, A. A. and W. D. Coolidge. Z. Phys. Chem. 46, 321 (1903).Google Scholar
  91. 91.
    Owen, B. B. and S. R. Brindley. J. Amer. Chem. Soc. 60, 2229 (1938).Google Scholar
  92. 92.
    Perrin, D. D., W. L. F. Armarego and D. R. Perrin. Purification of Laboratory Chemicals. Pergamon: Oxford (1966).Google Scholar
  93. 93.
    Pray, H. A., C. E. Schweickert and B. H. Minnich. Industr. Engng Chem. 44, 1146 (1952); Goddman, J. B. and N. W. Krase. Industr. Engng Chem. 23, 401 (1931).Google Scholar
  94. 94.
    Ramsteadt, F. E. Le Radium, 8, 253 (1911).Google Scholar
  95. 95.
    Rhodes, F. H. and F. S. Eisenhauer. Industr. Engng Chem. 19, 414 (1929).Google Scholar
  96. 96.
    Riddick, J. A. and W. B. Bunger. Organic Solvents, 3rd ed. Wiley-Interscience: New York (1970).Google Scholar
  97. 97.
    Richardson, F. D. and C. B. Alcock. In ref. 78, p 135.Google Scholar
  98. 98.
    Scholander, P. F. J. Biol. Chem. 167, 235 (1947).Google Scholar
  99. 99.
    Shepherd, M. J. Res. Nat. Bur. Stand. 6, 121 (1931); 26, 351 (1941).Google Scholar
  100. 100.
    Sidgwick, W. V., P. Pickford and B. H. Wilsdon, J. Chem. Soc. 99, 112 (1911).Google Scholar
  101. 101.
    Sidgwick, M. V. and E. K. Ewbank. J. Chem. Soc. 119, 979 (1921).Google Scholar
  102. 102.
    Simons, J. H. and R. D. Dunlop. J. Chem. Phys. 18, 335 (1950).Google Scholar
  103. 103.
    Sinor, J. E. and F. Kurata. J. Chem. Engng Data, 11, 537 (1966).Google Scholar
  104. 104.
    Smith, R. A. Mikrochemie, 11, 227 (1932).Google Scholar
  105. 105.
    Smith, A. and A. W. C. Menzies. J. Amer. Chem. Soc. 31, 1183 (1909).Google Scholar
  106. 106.
    Sobotka, H. and J. Kahn. J. Amer. Chem. Soc. 53, 2935 (1931).Google Scholar
  107. 107.
    Steinberg, M. and B. Manowitz. Industr. Engng Chem. 51, 49 (1959).Google Scholar
  108. 108.
    Stimson, H. F., D. R. Lovejoy and J. R. Clement. In Experimental Thermodynamics, Vol. I, p 15. Edited by J. P. McCullough and D. W. Scott. Butterworths: London (1968).Google Scholar
  109. 109.
    Stromberg, A. G. and A. I. Zelyanskaya. Analyt. Chem. USSR, 4, 286 (1949).Google Scholar
  110. 110.
    Swinnerton, J. W., V. J. Linnenbom and C. H. Check. Analyt. Chem. 34,483, 1509 (1962).Google Scholar
  111. 111.
    Taylor, N. W. and J. H. Hildebrand. J. Amer. Chem. Soc. 45, 682 (1923).Google Scholar
  112. 112.
    Thomsen, E. S. and J. Gjaldbaek. Acta Chem. Scand. 17, 127 (1963).Google Scholar
  113. 113.
    Vilbrandt, F. E. and J. A. Bender. Industr. Engng Chem. 15, 967 (1923).Google Scholar
  114. 114.
    Void, R. D., J. Phys. Chem. 43, 1213 (1939).Google Scholar
  115. 115.
    Walker, A. C., U. B. Bray and J. Johnston. J. Amer. Chem. Soc. 49, 1235 (1927).Google Scholar
  116. 116.
    Wiebe, R., V. L. Gady and C. Heins Jr. Industr. Engng Chem. 24, 823 and 927 (1932).Google Scholar
  117. 117.
    Wiebe, R., V. L. Gady and C. Heins Jr. J. Amer. Chem. Soc. 55, 947 (1933).Google Scholar
  118. 118.
    Williams, D. D. and R. R. Miller. Analyt. Chem. 34, 657 (1962).Google Scholar
  119. 119.
    Wright, R. J. Chem. Soc. 1203 (1926).Google Scholar
  120. 120.
    Zelhoffer, G. F. Industr. Engng Chem. 29, 548 (1937).Google Scholar
  121. 121.
    Zimmerman, H. K., Jr. Chem. Rev. 51, 25 (1952).Google Scholar
  122. 122.
    Zorin, A. D., A. E. Ezheleva and G. G. Devyatykh. Zavod. Lab. 29, 659 (1963). Chem. Abstr. 59, 8181 (1963).Google Scholar

Copyright information

© Springer Science+Business Media New York 1968

Authors and Affiliations

  • A. S. Kertes
    • 1
  • O. Levy
    • 2
  • G. Y. Markovits
    • 2
  1. 1.Institute of ChemistryThe Hebrew UniversityJerusalemIsrael
  2. 2.Department of ChemistryThe University of the NegevBeer ShebaIsrael

Personalised recommendations