Advertisement

Vapor Pressures

  • D. Ambrose

Abstract

The pressure exerted by an unsaturated vapor is dependent upon the volume of the vapor and its temperature. If such a vapor, containing a single component only, is confined at constant temperature in a vessel of variable volume and the volume is decreased, the pressure will rise as the isotherm is traced until the vapor becomes saturated and there is a discontinuity of slope at the dew-point, where condensation begins. Further decrease in volume leads to further condensation at constant pressure, the vapor-pressure, until the last bubble of vapor is condensed at the bubble-point and the sample is entirely liquid. (Condensation must take place slowly so that the heat of condensation may be dissipated in the surrounding enclosure, as otherwise the temperature, and therefore the pressure, will rise). An alternative description of the behavior when two phases are present is that, in equilibrium conditions, the pressure exerted by the vapor above a pure liquid is dependent upon temperature only and is independent of the fraction of the liquid which has vaporized. If, however, the sample consists of more than one component, the pressure is not independent of the fraction vaporized since the more volatile components evaporate more readily than the less volatile components and the compositions of the vapor and liquid differ: in these circumstances the bubble-point pressure will be higher than the dew-point pressure (except in the circumstances that the overall composition is that of an azeotrope; the complications arising in azeotropic systems have been ignored in this discussion)103.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

XXIV. References

  1. 1.
    Adamek, J. and V. Ponec. Coll. Czech. Chem. Commun. 35, 2477 (1970).Google Scholar
  2. 2.
    Allen, P. W., D. H. Everett and M. F. Penney. Proc. Roy. Soc. (London), Ser. A, 212, 149 (1952).Google Scholar
  3. 3.
    Ambrose, D. Trans. Faraday Soc. 52, 772 (1956).Google Scholar
  4. 4.
    Ambrose, D. J. Phys. E, 1, 41 (1968).Google Scholar
  5. 5.
    Ambrose, D. Gas Chromatography, Butterworths: London (1971).Google Scholar
  6. 6.
    Ambrose, D., ‘Vapour pressures’, in M. L. McGlashan, senior reporter, Specialist Periodical Report: Chemical Thermodynamics, Vol. I, p 218. The Chemical Society: London (1972).Google Scholar
  7. 7.
    Ambrose, D., E. Broderick and R. Townsend, J. Chem. Soc. A, 633 (1967).Google Scholar
  8. 8.
    Ambrose, D. and C. H. S. Sprake, J. Chem. Thermodyn. 2, 631 (1970).Google Scholar
  9. 9.
    Ambrose, D. and C. H. S. Sprake, J. Chem. Soc. A, 1263 (1971).Google Scholar
  10. 10.
    Ambrose, D. and C. H. S. Sprake, J. Chem. Thermodyn. 4, 603 (1972).Google Scholar
  11. 11.
    Ambrose, D., C. H. S. Sprake and R. Townsend. J. Chem. Thermodyn. 1, 499 (1969).Google Scholar
  12. 12.
    Ambrose, D., C. H. S. Sprake and R. Townsend, J. Chem. Thermodyn. 4, 247 (1972).Google Scholar
  13. 13.
    Andrews, T., Phil. Trans. Roy. Soc. London, 159, 575 (1869).Google Scholar
  14. 14.
    Back, R. A. and J. Betts, Canad. J. Chem. 43, 2157 (1965).Google Scholar
  15. l5.
    Balson, E. W., Trans. Faraday Soc. 43, 48 (1947).Google Scholar
  16. 16.
    Balson, E. W., K. G. Denbigh and N. K. Adam, Trans. Faraday Soc. 43, 42 (1947).Google Scholar
  17. 17.
    Barber, C. R., The Calibration of Thermometers, HMSO: London (1971).Google Scholar
  18. 18.
    Barber, C. R., R. Handley and E. F. G. Herington, Brit. J. Appl. Phys. 5, 41 (1954).Google Scholar
  19. 19.
    Barton, J. L. and H. Bloom, J. Phys. Chem. 60, 1413 (1956).Google Scholar
  20. 19a.
    Battino, R. and F. D. Evans, Analyt. Chem. 38, 1627 (1966).Google Scholar
  21. 20.
    Baxter, G. P. and J. E. Lansing, J. Amer. Chem. Soc. 42, 419 (1920).Google Scholar
  22. 21.
    Beattie, J. A., Proc. Amer. Acad. Arts. Sci. 69, 389 (1934).Google Scholar
  23. 22.
    Beattie, J. A., M. Benedict and B. E. Blaisdell, Proc. Amer. Acad. Arts. Sci. 71, 327 (1936).Google Scholar
  24. 23.
    Beattie, J. A. and D. G. Edwards, J. Amer. Chem. Soc. 70, 382 (1948).Google Scholar
  25. 24.
    Bechtold, M. F. and R. F. Newton, J. Amer. Chem. Soc. 62, 1390 (1940).Google Scholar
  26. 25.
    Bell, T. N., E. L. Cussler, K. R. Harris, C. N. Pepela and P. J. Dunlop, J. Phys. Chem. 72, 4693 (1968).Google Scholar
  27. 26.
    Bennett, M. J. and F. C. Tompkins, Trans. Faraday Soc. 53, 185 (1957).Google Scholar
  28. 27.
    Beynon, J. D. E. and R. B. Cairns, J. Sci. Instrum. 41, 111 (1964).Google Scholar
  29. 28.
    Beynon, J. H., Mass Spectroscopy and its Application to Organic Chemistry, Elsevier: Amsterdam (1960).Google Scholar
  30. 29.
    Blend, H., Rev. Sci. Instrum., 38, 1527 (1967).Google Scholar
  31. 30.
    Booth, H. S. and H. S. Halbedel, J. Amer. Chem. Soc. 68, 2652 (1946).Google Scholar
  32. 31.
    Booth, H. S. and C. F. Swinehart, J. Amer. Chem. Soc. 57, 1337 (1935).Google Scholar
  33. 32.
    Buchler, A. and Joan B. Berkowitz-Mattuck, ‘Mass spectrometry in the measurement of vapor pressure’, in R. A. Rapp, ed., Techniques in Metals Research, Vol. IV, Part 1, p 161. Interscience: New York (1970).Google Scholar
  34. 33.
    Burwell, R. L., M. Metlay and F. W. Pfohl, Rev. Sci. Instrum. 21, 681 (1950).Google Scholar
  35. 34.
    Calingaert, G., H. Soroos, V. Hnizda and H. Shapiro, J. Amer. Chem. Soc. 66, 1389 (1944).Google Scholar
  36. 35.
    Carlson, K. D., ‘The Knudsen effusion method’ in J. L. Margrave, ed., The Characterization of High-Temperature Vapors, p 115. Wiley: New York (1967).Google Scholar
  37. 36.
    Cater, E. D., ‘Measurement of gross equilibrium vaporization rate (Knudsen methods)’, in R. A. Rapp, ed., Techniques of Metals Research, Vol. IV, Part 1, p 21. Interscience: New York (1970).Google Scholar
  38. 37.
    Clark, A. L., Chem. Rev. 23, 1 (1938).Google Scholar
  39. 38.
    Clarke, A. M., F. Din and J. Robb, Physica, 17, 876 (1951).Google Scholar
  40. 39.
    Clarke, E. C. W. and D. N. Glew, Canad. J. Chem. 48, 964 (1970).Google Scholar
  41. 40.
    Clausing, P., Ann. Phys., Lpz., 12, 961 (1932).Google Scholar
  42. 41.
    Clopper, P. R., R. L. Altman and J. L. Margrave, ‘Static, techniques, dew points, vapor densities, and boiling point measurements’, in J. L. Margrave, ed., The Characterization of High-Temperature Vapors, p 48. Wiley: New York (1967).Google Scholar
  43. 42.
    Coburn, J. F., ASLE (Amer. Soc. Lubric. Engrs), Trans. 12, 129 (1969).Google Scholar
  44. 43.
    Conder, J. R., ‘Physical measurements by gas chromatography’, in J. H. Purneil, ed., Progress in Gas Chromatography (Advanc. Analyt. Chem. Instrum., Vol. VI), p 209. Inter-science: New York (1968).Google Scholar
  45. 44.
    Connolly, J. F. and G. A. Kandalic, Physics of Fluids, 3, 463 (1960).Google Scholar
  46. 45.
    Cooper, R. and D. P. Stranks, ‘Vapor pressure measurements’, in H. B. Jonassen and A. Weissberger, eds., Technique of Inorganic Chemistry; Vol. VI, p 1. Interscience: New York (1966).Google Scholar
  47. 46.
    Cottrell, F. G., J. Amer. Chem. Soc. 41, 721 (1919).Google Scholar
  48. 47.
    Counsell, J. F., J. H. S. Green, J. L. Hales and J. F. Martin, Trans. Faraday Soc. 61, 212 (1965).Google Scholar
  49. 48.
    Cruickshank, A. J. B. and A. J. B. Cutler, J. Chem. Engng Data, 12, 326 (1967).Google Scholar
  50. 49.
    Dainton, F. S. and H. M. Kimberley, Trans. Faraday Soc. 46, 912 (1950).Google Scholar
  51. 50.
    Davison, R. R., W. H. Smith Jr and K. W. Chun, Amer. Inst. Chem. Engrs Jnl, 13, 590 (1967).Google Scholar
  52. 51.
    Dickinson, W., Trans. Faraday Soc. 52, 31 (1956).Google Scholar
  53. 52.
    Diepen, G. A. M. and F. E. C. Scheffer, J. Amer. Chem. Soc. 70, 4085 (1948).Google Scholar
  54. 53.
    Dietz, V., J. Chem. Phys. 4, 575 (1936).Google Scholar
  55. 54.
    Douslin, D. R., R. T. Moore, J. P. Dawson and G. Waddington, J. Amer. Chem. Soc. 80, 2031 (1958).Google Scholar
  56. 55.
    Douslin, D. R. and A. Osborn, J. Sci. Instrum. 42, 369 (1965).Google Scholar
  57. 56.
    Dushman, S., Scientific Foundations of Vacuum Technique, 2nd ed. Wiley: New York (1962).Google Scholar
  58. 57.
    Duty, R. C. and W. R. Mayberry, J. Gas Chromatogr. 4, 115 (1966).Google Scholar
  59. 58.
    Edwards, J. L. and D. P. Johnson, J. Res. Nat. Bur. Stand. 72C, 27 (1968).Google Scholar
  60. 59.
    Eggertsen, F. T., E. E. Seibert and F. H. Stross, Analyt. Chem. 41, 1175 (1969).Google Scholar
  61. 60.
    Ernsberger, F. M. and H. W. Pitman, Rev. Sci. Instrum. 26, 584 (1955).Google Scholar
  62. 61.
    Fischer, A. K., Rev. Sci. Instrum. 37, 717 (1966).Google Scholar
  63. 62.
    Flint, E. P. Chem. & Ind. (London), 1618 (1968).Google Scholar
  64. 63.
    Fogler, M. F. and W. H. Rodebush, J. Amer. Chem. Soc. 45, 2080 (1923).Google Scholar
  65. 64.
    Fowler, L., W. N. Trump and C. E. Vogler, J. Chem. Engng Data, 13, 209 (1968).Google Scholar
  66. 65.
    Franck, A. Chemiker-Ztg, 93, 668 (1969).Google Scholar
  67. 66.
    Freeman, R. D., ‘Momentum sensors’, in J. L. Margrave, ed., The Characterization of High-Temperature Vapors, p 152. Wiley: New York (1967).Google Scholar
  68. 67.
    Freeman, R. D. and J. G. Edwards, ‘Transmission probabilities and recoil force correction factors for conical orifices’, in J. L. Margrave, ed., The Characterization of High-Temperature Vapors, p 508. Wiley: New York (1967).Google Scholar
  69. 68.
    Friedrich, K. and K. Stammbach, J. Chromatogr. 16, 22 (1964).Google Scholar
  70. 68a.
    Gerrard, W., J. Appl. Chem. Biotechnol. 22, 623 (1972).Google Scholar
  71. 69.
    Gerry, H. T. and L. J. Gillespie, Phys. Rev. 40, 269 (1932).Google Scholar
  72. 70.
    Gibson, R. E. and L. H. Adams, J. Amer. Chem. Soc. 55, 2679 (1933).Google Scholar
  73. 71.
    Giddings, J. C. and K. L. Malik, Industr. Engng Chem. 59, No. 4, 18 (1967).Google Scholar
  74. 72.
    Gilles, P. W., ‘Vaporization processes’, in J. L. Margrave, ed., The Characterization of High-Temperature Vapors, p 19. Wiley: New York (1967).Google Scholar
  75. 73.
    Goncharov, A. K. and M. Kh. Karapet’yants, Tr. Mosk. Khim.-Tekhnol. Inst. No. 62, 17 (1969).Google Scholar
  76. 74.
    Goodwin, R. D., J. Res. Nat. Bur. Stand. 65C, 231 (1961).Google Scholar
  77. 75.
    Greenwood, N. N., P. G. Perkins and M. E. Twentyman, J. Chem. Soc. A. 2109 (1967).Google Scholar
  78. 76.
    Haar, L. and J. M. H. Levelt Sengers, J. Chem. Phys. 52, 5069 (1970).Google Scholar
  79. 77.
    Hackham, R., W. E. Austin and R. D. Thomas, J. Sci. Instrum. 42, 344 (1965).Google Scholar
  80. 78.
    Hackspill, M. L., Ann. Chim. (Phys), 28, 613 (1913).Google Scholar
  81. 79.
    Hála, E., J. Pick, V. Fried and O. Vilim. Vapour-Liquid Equilibrium (trans. G. Standart), 2nd ed. Pergamon: Oxford (1968).Google Scholar
  82. 80.
    Hannay, J. B., Proc. Roy. Soc (London), Ser. A, 30, 484 (1880).Google Scholar
  83. 81.
    Hannay, J. B. and J. Hogarth, Proc. Roy. Soc. (London), Ser. A, 30, 178 (1880).Google Scholar
  84. 82.
    Harris, K. R. and P. J. Dunlop, J. Chem. Thermodyn. 2, 805 (1970).Google Scholar
  85. 83.
    Hawkes, S. J. and J. C. Giddings, Analyt. Chem. 36, 2229 (1965).Google Scholar
  86. 84.
    Hickman, K. C. D., J. C. Hecker and N. D. Embree, Analyt. Chem. 9, 264 (1937).Google Scholar
  87. 85.
    Hill, A. V., Proc. Roy. Soc., (London), Ser. A, 127, 9 (1930).Google Scholar
  88. 86.
    Hoge, H. J., J. Res. Nat. Bur. Stand. 44, 321 (1950).Google Scholar
  89. 87.
    Holm-Jensen, I., Analyt. Chim. Acta, 23, 13 (1960).Google Scholar
  90. 88.
    Hopke, E. R. and G. W. Sears, J. Amer. Chem. Soc. 70, 3801 (1948).Google Scholar
  91. 89.
    Jenkins, A. C. and C. M. Birdsall, J. Chem. Phys. 20, 1158 (1952).Google Scholar
  92. 90.
    Jepson, W. B., M. J. Richardson and J. S. Rowlinson, Trans. Faraday Soc. 53, 1586 (1957).Google Scholar
  93. 91.
    Jepson, W. B. and J. S. Rowlinson, J. Chem. Phys. 23, 1599 (1955).Google Scholar
  94. 92.
    Kaufman, M. H. and A. G. Whittaker, J. Chem. Phys. 24, 1104 (1956).Google Scholar
  95. 93.
    Kay, W. B., J. Amer. Chem. Soc. 68, 1336 (1946); 69, 1273 (1947).Google Scholar
  96. 94.
    Kay, W. B. and G. M. Panbosch, Industr. Engng Chem. 45, 221 (1953).Google Scholar
  97. 95.
    Kemme, H. R. and S. I. Kreps, J. Chem. Engng Data, 14, 98 (1969).Google Scholar
  98. 96.
    Klumb, H. and J. Lückert, Vakuum-Tech. 8, 62 (1959).Google Scholar
  99. 97.
    Klumb, H. and H. Schwarz. Z. Phys. 122, 418 (1944).Google Scholar
  100. 98.
    Knudsen, M., Ann. Phys., Lpz., 32, 809 (1910).Google Scholar
  101. 99.
    Knudsen, M., The Kinetic Theory of Gases. Methuen: London (1950).Google Scholar
  102. 100.
    Knudsen, M., Ann. Phys., Lpz., 29, 179 (1909); 34, 593 (1911).Google Scholar
  103. 101.
    Kobe, K. A. and R. E. Lynn. Chem. Rev. 52, 117 (1953).Google Scholar
  104. 102.
    Komarek, K. L., in O. Kubaschewski, ed., Metallurgical Chemistry, p. 75. H.M.S.O.: London (1972).Google Scholar
  105. 103.
    Kreglewski, A., ‘Vapour pressure and boiling temperature measurements’, in L. A. K. Staveley, ed., The Characterization of Chemical Purity: Organic Compounds, p 51. Butter-worths: London (1971).Google Scholar
  106. 104.
    Kubaschewski, O., E. L1. Evans and C. B. Alcock, Metallurgical Thermochemistry, 4th ed. Pergamon: Oxford (1967).Google Scholar
  107. 105.
    Kudchadker, A. P., G. H. Alani and B. J. Zwolinski, Chem. Rev. 68, 659 (1968).Google Scholar
  108. 106.
    Langmuir, I., J. Amer. Chem. Soc. 35, 105 (1913).Google Scholar
  109. 107.
    Langmuir, I., Phys. Rev. 2, 239 (1913).Google Scholar
  110. 108.
    Langmuir, I. and C. M. Mackay, Phys. Rev. 4, 377 (1914).Google Scholar
  111. 109.
    Liang, S. Chu, J. Appl. Phys. 22, 148 (1951).Google Scholar
  112. 110.
    Maass, O. Chem. Rev. 23, 17 (1938).Google Scholar
  113. 111.
    Machin, W. D., Canad. J. Chem. 45, 1904 (1967).Google Scholar
  114. 112.
    Mackle, H. and R. T. B. McClean, Trans. Faraday Soc. 60, 817 (1964).Google Scholar
  115. 113.
    Margrave, J. L., ‘Vapour pressure’, in J. O’M Bockris, J. L. White and J. D. Mackenzie, eds., Physicochemical Measurements at High Temperatures, p. 225. Butterworths: London (1959).Google Scholar
  116. 114.
    Margrave, J. L., ed., The Characterization of High-Temperature Vapors, Wiley: New York (1967).Google Scholar
  117. 115.
    Martin, J. F. and D. P. Biddiscombe, Trans. Faraday Soc. 54, 1316 (1958).Google Scholar
  118. 116.
    Martire, D. E. and L. Z. Pollara. ‘Interactions of the solute with the liquid phase’, in J. C. Giddings and R. A. Keller, eds., Advances in Chromatography, Vol. I, p 335. Dekker: New York (1965).Google Scholar
  119. 117.
    Matukuma, A., Gas Chromatography 1968 (ed. C. L. A. Harbourn), p 55. Institute of Petroleum: London (1969).Google Scholar
  120. 118.
    Meeks, A. C. and I. J. Goldfarb, Analyt. Chem. 39, 908 (1967).Google Scholar
  121. 119.
    Menzies, A. W. C., J. Amer. Chem. Soc. 42, 978 (1920).Google Scholar
  122. 120.
    Merten, U. and W. E. Bell, ‘The transpiration method’, in J. L. Margrave, ed., The Characterization of High-Temperature Vapors, p 91. Wiley: New York (1967).Google Scholar
  123. 120a.
    Meyes, C. H. and M. S. Van Dusen, J. Res. Nat. Bur. Stand. 10, 381 (1933).Google Scholar
  124. 121.
    Michels, A. and T. Wassenaar, Physica, 14, 104 (1948).Google Scholar
  125. 122.
    Miller, G. A., J. Chem. Engng Data, 8, 69 (1963).Google Scholar
  126. 123.
    Motzfeldt, K., J. Phys. Chem. 59, 139 (1955).Google Scholar
  127. 124.
    Motzfeldt, K., Acta Chem. Scand. 18, 1795 (1964).Google Scholar
  128. 125.
    Mueller, E. P. and H. A. Burgess, J. Amer. Chem. Soc. 41, 745 (1919).Google Scholar
  129. 126.
    Nesmeyanov, A. N., Vapor Pressures of the Elements (trans. J. I. Carasso). Inforsearch: London (1963).Google Scholar
  130. 127.
    Neumann, K. and E. Völker, Z. Phys. Chem. A, 161, 33 (1932).Google Scholar
  131. 128.
    Norman, J. H. and P. Winchell, ‘Measurement of vapor pressures by transpiration, isopiestic, and other techniques’, in R. A. Rapp, ed., Techniques of Metals Research, Vol. IV, Part 1, p 131. Interscience: New York (1970).Google Scholar
  132. 129.
    Oliver, G. D. and J. W. Grisard, Rev. Sci. Instrum. 24, 204 (1953).Google Scholar
  133. 130.
    Oliver, G. D. and J. W. Grisard, J. Amer. Chem. Soc. 78, 561 (1956).Google Scholar
  134. 131.
    Osborn, A. G. and D. R. Douslin, J. Chem. Engng Data, 11, 502 (1966).Google Scholar
  135. 132.
    Osborne, N. S., H. F. Stimson and D. C. Ginnings, J. Res. Nat. Bur. Stand. 23, 197 (1939).Google Scholar
  136. 133.
    Overberger, J. E., W. A. Steele and J. G. Aston, J. Chem. Thermodyn. 1, 535 (1969).Google Scholar
  137. 134.
    Paule, R. C. and J. L. Margrave, ‘Free-evaporation and effusion techniques’, in J. L. Margrave, ed., The Characterization of High-Temperature Vapors, p 130. Wiley: New York (1967).Google Scholar
  138. 135.
    Pearce, J. N. and R. D. Snow, J. Phys. Chem. 31, 231 (1927).Google Scholar
  139. 136.
    Petsev, N. and C. Dimitrov. J. Chromatogr. 34, 310 (1968).Google Scholar
  140. 137.
    Porter, A. W., Proc. Roy. Soc. (London), Ser. A, 79, 519 (1907); 80, 457 (1908).Google Scholar
  141. 138.
    Poynting, J. H., Phil. Mag. 12, 32 (1881).Google Scholar
  142. 139.
    Ramsay, W., Proc. Roy. Soc. (London), Ser. A, 30, 328 (1880).Google Scholar
  143. 140.
    Ramsay, W. and S. Young, Phil. Trans. Roy. Soc. London, 175, 37 (1884).Google Scholar
  144. 141.
    Rapp, R. A., ed., Techniques in Metals Research, Vol. IV, Part 1. Interscience: New York (1970).Google Scholar
  145. 142.
    Richardson, M. J. and J. S. Rowlinson, Trans. Faraday Soc. 55, 1333 (1959).Google Scholar
  146. 143.
    Robin, S. and B. Vodar, J. Phys. Radium, 13, 264 (1952).Google Scholar
  147. 144.
    Robinson, R. A. and D. A. Sinclair, J. Amer. Chem. Soc. 56, 1830 (1934).Google Scholar
  148. 145.
    Rock, H., Z. Phys. Chem. 4, 242 (1955).Google Scholar
  149. 146.
    Rodebush, W. H. and G E. Coons, J. Amer. Chem. Soc. 49, 1953 (1927).Google Scholar
  150. 147.
    Rodebush, W. H. and A. L. Dixon, Phys. Rev. 26, 851 (1925).Google Scholar
  151. 148.
    Rodebush, W. H. and W. F. Henry, J. Amer. Chem. Soc. 52, 3159 (1930).Google Scholar
  152. 148a.
    Rondeau, R. E., J. Chem. Educ. 44, 530 (1967).Google Scholar
  153. 149.
    Rosen, F. D. and D. Wallace, Rev. Sci. Instrum. 24, 349 (1953).Google Scholar
  154. 150.
    Rosenberg, A. J. and C. S. Martel, J. Phys. Chem. 62, 457 (1958).Google Scholar
  155. 151.
    Rossini, F. D., B. J. Mair and A. J. Streiff, Hydrocarbons from Petroleum. Reinhold: New York (1953).Google Scholar
  156. 152.
    Rossmann, M. G. and J. Yarwood, J. Chem. Phys. 21, 1406 (1953).Google Scholar
  157. 153.
    Rowlinson, J. S., Liquids and Liquid Mixtures, 2nd ed. Butterworths: London (1969).Google Scholar
  158. 154.
    Scatchard, O., W. J. Hamer and S. E. Wood, J. Amer. Chem. Soc. 60, 3061 (1938).Google Scholar
  159. 155.
    Schomburg, G., Analyt. Chim. Acta, 38, 45 (1967).Google Scholar
  160. 156.
    Sears, G. W. and E. R. Hopke, J. Phys. Chem. 52, 1137 (1948).Google Scholar
  161. 157.
    Sengers, J. V. and A. L. Sengers. Chem. Engng News, 46, 104 (10 June 1968).Google Scholar
  162. 158.
    Shaw, J. A., Industr. Engng Chem. (Analyt. Ed.), 6, 479 (1934).Google Scholar
  163. 159.
    Shepherd, M., J. Res. Nat. Bur. Stand. 12, 185 (1934).Google Scholar
  164. 160.
    Silva, W. J., J. W. Johnson and D. Cubicciotti, Rev. Sci. Instrum. 36, 1505 (1965).Google Scholar
  165. 161.
    Singh, Jaswant and G. C. Benson, Canad. J. Chem. 46, 1249 (1968).Google Scholar
  166. 162.
    Siwoloboff, A., Ber. Dtsch. Chem. Ges. 19, 795 (1886).Google Scholar
  167. 163.
    Smith, A. and A. W. C. Menzies, J. Amer. Chem. Soc. 32, 1412 (1910).Google Scholar
  168. 164.
    Smith, H. A., R. L. Combs and J. M. Googin, J. Phys. Chem. 58, 997 (1954).Google Scholar
  169. 165.
    Spauschus, H. O., Rev. Sci. Instrum. 32, 1279 (1961).Google Scholar
  170. 166.
    Spedding, F. H. and J. L. Dye, J. Phys. Chem. 59, 581 (1955).Google Scholar
  171. 167.
    Straty, G. C. and R. Prydz, Rev. Sci. Instrum. 41, 1223 (1970).Google Scholar
  172. 168.
    Stubley, D. and J. S. Rowlinson, Trans. Faraday Soc. 57, 1275 (1961).Google Scholar
  173. 169.
    Sunner, S. and N. Magnusson, Acta Chem. Scand. 4, 1464 (1950).Google Scholar
  174. 170.
    Swietoslawski, W., Ebulliometric Measurements, Reinhold: New York (1945).Google Scholar
  175. 171.
    Takács, J., C. Szita and G. Tarján, J. Chromatogr. 56, 1 (1971).Google Scholar
  176. 172.
    Thomas, L. H., H. Smith and R. Meatyard, J. Phys. E, 1, 1119 (1968).Google Scholar
  177. 173.
    Thomson, G. W., ‘Determination of vapor pressure’, in A. Weissberger, ed., Physical Methods of Organic Chemistry; Vol. I, Part 1, p 357. 3rd ed. Interscience: New York (1959).Google Scholar
  178. 174.
    Thomson, G. W. and D. R. Douslin, ‘Determination of pressure and volume’, in A. Weissberger and B. W. Rossiter, eds., Physical Methods of Chemistry, Vol. I, Part 1, p 23. Wiley: New York (1971).Google Scholar
  179. 175.
    Tickner, A. W. and F. P. Lossing, J. Phys. Chem. 55, 733 (1951)Google Scholar
  180. 176.
    Turcotte, R. P., T. D. Chikalla and L. Eyring, Analyt. Chem. 43, 958 (1971).Google Scholar
  181. 177.
    Verhoek, F. H. and A. L. Marshall, J. Amer. Chem. Soc. 61, 2737 (1939).Google Scholar
  182. 178.
    Volmer, M. Z., Phys. Chem., Bodenstein-F esthound, 863 (1931).Google Scholar
  183. 179.
    Ward, J. W. and M. V. Fraser, J. Chem. Phys. 50, 1877 (1969).Google Scholar
  184. 180.
    Washburn, E. W. and E. O. Heuse, J. Amer. Chem. Soc. 37 309 (1915).Google Scholar
  185. 181.
    Washburn, E. W. and J. W. Read, J. Amer. Chem. Soc. 41, 729 (1919).Google Scholar
  186. 182.
    Waxman, M. and W. T. Chen, J. Res. Nat. Bur. Stand. 69C, 27 (1965).Google Scholar
  187. 183.
    Webster, T. J., J. Soc. Chem. Ind. (London), 69, 343 (1950).Google Scholar
  188. 184.
    Whitman, C. I., J. Chem. Phys. 20, 161 (1952); 21, 1407 (1953).Google Scholar
  189. 185.
    Wiedemann, H. G., Thermochim. Acta, 3, 355 (1972).Google Scholar
  190. 186.
    Willingham, C. B., W. J. Taylor, J. M. Pignocco and F. D. Rossini, J. Res. Nat. Bur. Stand. 35, 219 (1945).Google Scholar
  191. 187.
    Wilson, A. E., J. H. Kim and A. Cosgarea, Rev. Sci. Instrum. 36, 1428 (1965).Google Scholar
  192. 188.
    Winterbottom, W. L., ‘Free-vaporization measurements (Langmuir technique)’, in R. A. Rapp, ed. Techniques of Metals Research, Vol. IV, Part 1, p 95. Interscience: New York (1970).Google Scholar
  193. 189.
    Young, C. L., Chromatogr. Rev. 10, 129 (1968).Google Scholar
  194. 190.
    Young, S., J. Chim. Phys. 4, 425 (1904).Google Scholar
  195. 191.
    Young, S., Sci. Proc. Roy. Dublin Soc. 12, 374 (1910).Google Scholar
  196. 192.
    Zmaczynski, A., J. Chem. Phys. 27, 503 (1930).Google Scholar

Copyright information

© Springer Science+Business Media New York 1968

Authors and Affiliations

  • D. Ambrose
    • 1
  1. 1.Division of Chemical StandardsNational Physical LaboratoryTeddingtonUK

Personalised recommendations