Advertisement

Relation of the Dielectric Constant and the Refractive Index to Thermodynamic Properties

  • B. L. Smith
Chapter

Abstract

The refractive index (n) or dielectric constant (ε) of a dielectric material is a function of the thermodynamic state. For a non-polar substance, in which the constituent molecules do not possess a permanent dipole moment, ε = n 2 (at the same frequency), and the dielectric constant is related to the molecular polarizability α, Avogadro’s number N A, and the density ρ, by the Clausius-Mossotti relation (CM).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

VI. References

  1. 1.
    Abbiss, C. P., C. M. Knobler, R. K. Teague and C. J. Pings. J. Chem. Phys. 42, 4145 (1965).CrossRefGoogle Scholar
  2. 2.
    Baldini, G. Phys. Rev. 128, 1562 (1962); Schnepp, O. and K. Dressler. J. Chem. Phys. 33, 49 (1960); Bostanjoglo, O. and L. Schmidt. Phys. Letters, 22, 130 (1966); Steinberger, I. T. and O. Schnepp Solid State Commun. 5, 417 (1967); Beaglehole, D. Phys. Rev. Letters, 15, 551 (1965).CrossRefGoogle Scholar
  3. 3.
    Baly, E. C. C. Spectroscopy. Longmans Green: New York (1929).Google Scholar
  4. 4.
    De Boer, J., F. Van der Maesen and C. A. ten Seldam. Physica, 19, 265 (1953).CrossRefGoogle Scholar
  5. 5.
    Böttcher, C. J. F. Physica, 9, 937 (1942).CrossRefGoogle Scholar
  6. 6.
    Böttcher, C. J. F. Theory of Electric Polarization. Elsevier: Amsterdam (1952).Google Scholar
  7. 7.
    Brown, W. F. Handbuch der Physik. 17, 69 (1956).Google Scholar
  8. 8.
    Brown, W. F. Handbuch der Physik. 17, 74 (1956).Google Scholar
  9. 9.
    Buckingham, A. D. Trans. Faraday Soc. 52, 747 (1956).CrossRefGoogle Scholar
  10. 10.
    Buckingham, A. D. and J. A. Pople. Trans. Faraday Soc. 51, 1029 (1955): J. Chem. Phys. 27, 820 (1957).CrossRefGoogle Scholar
  11. 11.
    Chapman, J. A., P. C. Finnemore and B. L. Smith. Phys. Rev. Letters, 21, 1306 (1968).CrossRefGoogle Scholar
  12. 12.
    Chapman, J. A. and B. L. Smith. J. Sci. Instrum. 2, 100 (1969).Google Scholar
  13. 13.
    Dexter, D. L. and R. S. Knox. Excitons. Interscience: Paris (1965).Google Scholar
  14. 14.
    Doniach, S. and R. Huggins. Phil. Mag. 12, 393 (1965).CrossRefGoogle Scholar
  15. 15.
    Dunn, A. F. Canad. J. Phys. 42, 53 (1964).CrossRefGoogle Scholar
  16. 16.
    Eatwell, A. J. and G. O. Jones. Phil. Mag. 10, 1059 (1964).CrossRefGoogle Scholar
  17. 17.
    Edwards, M. H. and W. C. Woodbury. Phys. Rev. 129, 1911 (1963).CrossRefGoogle Scholar
  18. 18.
    Elliott, R. J. Phys. Rev. 108, 1384 (1957).CrossRefGoogle Scholar
  19. 19.
    Fisher, M. E. US Nat. Bur. Stand. Misc. Publ. No. 273, 108 (1966).Google Scholar
  20. 20.
    Garside, D. H., H. V. Mølgaard and B. L. Smith. J. Phys. B, 1, 449 (1968).CrossRefGoogle Scholar
  21. 21.
    Grange, J. Ann. Phys., Paris, 3, 48 (1959).Google Scholar
  22. 22.
    Ingersoll, L. R. and D. H. Liebenberg. J. Opt. Soc. Amer. 46, 538 (1956).CrossRefGoogle Scholar
  23. 23.
    Jansen, L. Phys. Rev. 112, 434 (1958).CrossRefGoogle Scholar
  24. 24.
    Jansen, L. and P. Mazur. Physica, 21, 193 (1955).CrossRefGoogle Scholar
  25. 25.
    Jansen, L. and J. Solem. Phys. Rev. 104, 1291 (1956).CrossRefGoogle Scholar
  26. 26.
    Johnston, D. R., G. J. Oudemans and R. H. Cole. J. Chem. Phys. 33, 1310 (1960); Amey, R. L. and R. H. Cole. J. Chem. Phys. 40, 146 (1964); Orcutt R. H. and R. H. Cole. Physical, 1779 (1965). Orcutt, R. H. and R. H. Cole. J. Chem. Phys. 46, 697 (1967).CrossRefGoogle Scholar
  27. 27.
    Jones, G. O. and B. L. Smith. Phil. Mag. 5, 355 (1960).CrossRefGoogle Scholar
  28. 28.
    Keil, T. H. J. Chem. Phys. 46, 4404 (1967).CrossRefGoogle Scholar
  29. 29.
    Kirkwood, J. G. J. Chem. Phys. 4, 592 (1936).CrossRefGoogle Scholar
  30. 30.
    Lorentz, H. A. The Theory of Electrons. Teubner: Liepzig (1909).Google Scholar
  31. 31.
    Lorentzen, H. L. Acta Chem. Scand. 7, 1336 (1953). Straub, J. Z. Tech. Chem. 5, 291 (1956).CrossRefGoogle Scholar
  32. 32.
    Mandel, M. and P. Mazur. Physica, 22, 289 (1956).CrossRefGoogle Scholar
  33. 33.
    Michels, A. and A. Botzen. Physica, 15, 769 (1949).CrossRefGoogle Scholar
  34. 34.
    Michels, A., J. M. Levelt and G. J. Wolkers. Physica. 24, 769 (1958).CrossRefGoogle Scholar
  35. 35.
    Michels, A., C. A. ten Seldam and S. D. J. Overdijk. Physica, 17, 781 (1951).CrossRefGoogle Scholar
  36. 36.
    Mølgaard, H. V. D. Phil. Thesis. University of Sussex (1971).Google Scholar
  37. 37.
    Onsager, L. J. Amer. Chem. Soc. 58, 1486 (1936).CrossRefGoogle Scholar
  38. 38.
    Parpia, D. Y. and B. L. Smith. J. Phys. C. 4, 2254 (1971).CrossRefGoogle Scholar
  39. 39.
    Roach, P. R. and D. H. Douglas Jr. Phys. Rev. Letters. 19, 287 (1967).CrossRefGoogle Scholar
  40. 40.
    Rosen, J. S. J. Opt. Soc. Amer. 37, 832 (1947).CrossRefGoogle Scholar
  41. 41.
    ten Seldam, C. A. and S. R. de Groot. Physica. 18, 905 (1952).CrossRefGoogle Scholar
  42. 42.
    Sinnock, A. C. and B. L. Smith. Phys. Rev. 181, 1297 (1969).CrossRefGoogle Scholar
  43. 43.
    Taylor, L. S. J. Math. Phys. 4, 824 (1963); Larsen, S. Y., R. D. Mountain and R. Zwanzig. J. Chem. Phys. 42, 2187 (1965).CrossRefGoogle Scholar
  44. 44.
    Teague, R. K. and C. J. Pings. J. Chem. Phys. 48, 4973 (1968).CrossRefGoogle Scholar
  45. 45.
    Thompson, A. M. and D. G. Lampard. Nature, London, 177, 888 (1956).CrossRefGoogle Scholar
  46. 46.
    van Vleck, J. H. J. Chem. Phys. 5, 991 (1937).CrossRefGoogle Scholar
  47. 47.
    Yvon, J. Recherche sur la Théorie Cinétique des Liquides. Herman: Paris (1937).Google Scholar
  48. 48.
    Weinberger, M. A. and W. G. Schneider. Canad. J. Chem. 30, 422 (1952).CrossRefGoogle Scholar
  49. 49.
    Zwanzig, R. W. J. Chem. Phys. 25, 211 (1956).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1968

Authors and Affiliations

  • B. L. Smith
    • 1
  1. 1.School of Mathematical and Physical SciencesUniversity of SussexFalmerUK

Personalised recommendations