Advertisement

Thermodynamic Properties and the Velocity of Sound

  • W. Van Dael
Chapter

Abstract

The measurement of the velocity of sound in fluids provides a means for obtaining some equilibrium thermodynamic data which are not readily accessible by other experimental methods. The unique feature of sound propagation is the fact that, in the large majority of the experimental situations, it is an adiabatic process: sound velocity data give direct and precise information on the adiabatic properties of the fluid.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

X. References

  1. 1.
    Abraham, B. M., Y. Eckstein, J. B. Ketterson, M. Kuchnir and P. Roach. Phys. Rev. A1, 250 (1970).Google Scholar
  2. 2.
    Aziz, R. A., D. H. Bowman and C. C. Lim. Canad. J. Phys. 50, 646 (1972).Google Scholar
  3. 3.
    Aziz, R. A., C. C. Lim and D. H. Bowman. Canad. J. Chem. 45, 1037 (1967).Google Scholar
  4. 4.
    Aziz, R. A., D. H. Bowman and C. G Lim. Canad. J. Chem. 45, 2079 (1967).Google Scholar
  5. 5.
    Barker, J. A. Proc. Roy. Soc. 259, 442 (1961).Google Scholar
  6. 6.
    Barmatz, M. Phys. Rev. Letters, 24, 651 (1970).Google Scholar
  7. 7.
    Bauer, H. J. ‘Phenomenological theory of the relaxation phenomena in gases’. Physical Acoustics, Vol. II, part A, pp 48–131. Edited by W. R. Mason. Academic Press: New York (1965).Google Scholar
  8. 8.
    Bauer, H. J. Advanc. Molec. Relaxation Processes, 2, 319–376 (1972).Google Scholar
  9. 9.
    Bergmann, L. Der Ultraschall, S. Hirzel: Stuttgart (1954).Google Scholar
  10. 10.
    Beyer, R. T. and S. V. Letcher, Physical Ultrasonics, Academic Press: New York (1969).Google Scholar
  11. 11.
    Bhatia, A. B. Ultrasonic Absorption (An Introduction to the Theory of Sound Absorption and Dispersion in Gases, Liquids and Solids). Clarendon Press: Oxford (1967).Google Scholar
  12. 12.
    Bird, R. B. and E. L. Spotz, University of Wisconsin, CMS99 (1950).Google Scholar
  13. 13.
    Bird, R. B., E. L. Spotz and J. O. Hirschfelder. J. Chem. Phys. 18, 1395 (1950).Google Scholar
  14. 14.
    Blagoy, Y. P., A. E. Butko, S. A. Mikhailenko and V. V. Yakuba. Akust. Zh. 12, 405 (1966); Soviet. Phys. Acoust. 12, 355 (1967).Google Scholar
  15. 15.
    Blagoy, Y. P., A. E. Butko, S. A. Mikhailenko and V. V. Yakuba. Ukr. Fiz. Zh. 13, 1605 (1968).Google Scholar
  16. 16.
    Blagoy, Y. P., A. E. Butko, S. A. Mikhailenko and V. V. Yakuba. Ukr. Fiz. Zh. 13, 1805 (1968).Google Scholar
  17. 17.
    Blandamer, M. J., and D. Waddington, J. Phys. Chem. 74, 2569 (1970).Google Scholar
  18. 18.
    Blitz, J. Fundamentals of Ultrasonics, Butterworths; London (1963).Google Scholar
  19. 19.
    Bowman, D. H., C. C. Lim and R. A. Aziz, Canad. J. Chem. 46, 1175 (1968).Google Scholar
  20. 20.
    Boyd, M. E., S. Y. Larsen and H. Plumb, J. Res. Nat. Bur. Stand. 72A, 155 (1968).Google Scholar
  21. 21.
    Boyd, M. E. and R. D. Mountain, Phys. Rev. A2, 2164 (1970).Google Scholar
  22. 22.
    Bruch, L. W. Phys. Rev. 178, 303 (1969).Google Scholar
  23. 23.
    Bruch, L. W. Phys. Rev. A2, 2164 (1970).Google Scholar
  24. 24.
    Carnavale, E. H. and T. A. Litovitz. J. Acoust. Soc. Amer. 27, 547 (1955).Google Scholar
  25. 25.
    Cataland, G. and H. Plumb, J. Res. Nat. Bur. Stand. 69A, 531 (1965).Google Scholar
  26. 26.
    Cedrone, N. P. and D. R. Curran. J. Acoust. Soc. Amer. 23, 627 (1951).Google Scholar
  27. 27.
    Chapman, S. and T. G. Cowling. The Mathematical Theory of Non-uniform Gases. Cambridge University Press: London (1960).Google Scholar
  28. 28.
    Chen, S. H. and N. Polonsky, Phys. Rev. Letters, 20, 909 (1968).Google Scholar
  29. 29.
    Chynoweth, A. G. and W. G. Schneider. J. Chem. Phys. 20, 1777 (1952).Google Scholar
  30. 30.
    Cook, D. and J. S. Rowlinson. Proc. Roy. Soc. (London) A, 219, 405 (1953).Google Scholar
  31. 31.
    Cottrell, T. L. and J. C. McCoubrey, Molecular Energy Transfer in Gases. Butterworths: London (1961).Google Scholar
  32. 32.
    D’Arrigo, G., L. Mistura and P. Tartaglia, Phys. Rev. A1, 286 (1970).Google Scholar
  33. 33.
    D’Arrigo, G. and D. Sette. J. Chem. Phys. 48, 691 (1968).Google Scholar
  34. 34.
    De Boer, J. Physica, 14, 139 (1948).Google Scholar
  35. 35.
    Del Grosso, U. A., E. J. Smura and P. F. Fougere. US Naval Research Laboratory Rep. No. NRL-4439 (1954).Google Scholar
  36. 36.
    Eden, D., C. W. Garland and J. Thoen. Phys. Rev. Letters, 28, 726 (1972).Google Scholar
  37. 37.
    Eggers, F. Acustica, 19, 323 (1967).Google Scholar
  38. 38.
    Eucken, A. and F. Hauck, Z. Phys. Chem. 134, 161 (1928).Google Scholar
  39. 39.
    Fixman, M. J. Chem. Phys. 32, 1363 (1960).Google Scholar
  40. 40.
    Fixman, M. J. Chem. Phys. 36, 1957 (1962).Google Scholar
  41. 41.
    Fixman, M. J. Chem. Phys. 36, 1961 (1962).Google Scholar
  42. 42.
    Fleury, P. A. and J. P. Boon. Phys. Rev. 186, 244 (1969).Google Scholar
  43. 43.
    Forgacs, R. L. J. Acoust. Soc. Amer. 32, 1697 (1960).Google Scholar
  44. 44.
    Fritsche, L. Acustica, 10, 189 (1960).Google Scholar
  45. 45.
    Garland, C. W. ‘Ultrasonic investigation of phase transitions and critical points’. Physical Acoustics, edited by W. P. Mason. Vol. VII, Chap. 2. Academic Press: New York (1970).Google Scholar
  46. 46.
    Garland, C. W., D. Eden and L. Mistura. Phys. Rev. Letters, 25, 1161 (1970).Google Scholar
  47. 47.
    Gordon, R. G., W. Klemperer and J. I. Steinfeld. Annu. Rev. Phys. Chem. 19, 215 (1968).Google Scholar
  48. 48.
    Greenspan, M. J. Acoust. Soc. Amer. 28, 644 (1956).Google Scholar
  49. 49.
    Greenspan, M. ‘Transmission of sound waves in gases at very low pressure’. Physical Acoustics, edited by W. P. Mason, Vol. II. part A, pp 1–43. Academic Press: New York (1965).Google Scholar
  50. 50.
    Griffiths, R. B. and J. C. Wheeler. Phys. Rev. A2, 1047 (1970).Google Scholar
  51. 51.
    Grimsrud, D. T. and J. H. Werntz. Phys. Rev. 157, 181 (1967).Google Scholar
  52. 52.
    Guggenheim, E. A. Mixtures. Clarendon Press: Oxford (1952).Google Scholar
  53. 53.
    Guptill, E. W., C. K. Hoyt and D. K. Robinson, Canad. J. Phys. 33, 397(1955).Google Scholar
  54. 54.
    Güsewell, D., F. Schmeissner and J. Schmid. Cryogenics, 10, 150 (1970).Google Scholar
  55. 55.
    Gyorog, D. A. and E. F. Obert. Amer. Instn Chem. Engrs Jnl, 10, 625 (1964).Google Scholar
  56. 56.
    Haebel, E. U. Acustica, 20, 65 (1968).Google Scholar
  57. 57.
    Herzfeld, K. F. and T. A. Litovitz. Absorption and Dispersion of Ultrasonic Waves. Academic Press: New York (1959).Google Scholar
  58. 58.
    Hildebrand, J. H. and R. L. Scott. Regular Solutions, Prentice-Hall: Englewood Cliffs (1962).Google Scholar
  59. 59.
    Hilsenrath, J. et al. Circ. US Nat. Bur. Stand. No. 564 (1955).Google Scholar
  60. 60.
    Hirschfelder, J. O., C. F. Curtiss and R. B. Bird. Molecular Theory of Gases and Liquids. Wiley: New York (1954).Google Scholar
  61. 61.
    Holbrook, R. D. J. Acoust. Soc. Amer. 20, 590 (1948).Google Scholar
  62. 62.
    Hubbard, J. C. Phys. Rev. 38, 1011 (1931).Google Scholar
  63. 63.
    Hubbard, J. C. Phys. Rev. 41, 523 (1932).Google Scholar
  64. 64.
    Jeans, J. J. Kinetic Theory of Gases. Cambridge University Press: London (1960).Google Scholar
  65. 65.
    Jenkin, C. F. Proc. Roy. Soc. (London) A, 98, 170 (1921).Google Scholar
  66. 66.
    Kawasaki, K. Progr. Theor. Phys. 40, 930 (1968).Google Scholar
  67. 67.
    Kawasaki, K. Ann. Phys. (NY), 61, 1 (1970).Google Scholar
  68. 68.
    Kawasaki, K. Phys. Rev. A1, 1750 (1970).Google Scholar
  69. 69.
    Keesom, W. H. and A. Van Itterbeck, Commun. Kamerlingh Onnes Lab. Univ. Leiden, No. 213b (1931).Google Scholar
  70. 70.
    Kneser, H. O. ‘Schallabsorption und-dispersion in Gasen’, Encyclopedia of Physics, Vol. XI, 1 Acoustics I, pp 129–195. Edited by S. Flügge. Springer: Berlin (1961).Google Scholar
  71. 71.
    Kneser, H. O. ‘Relaxation processes in gases’. Physical Acoustics, Vol. III, part A, pp 133–199. Edited by W. P. Mason. Academic Press: New York (1965).Google Scholar
  72. 72.
    Kudrjawzew, B. B. Anwendung von Ultraschallverfahren bei Physikalisch-Chemischen Untersuchungen. VEB Deutscher Verlag der Wissenschaften: Berlin (1955).Google Scholar
  73. 73.
    Kuhl, W., G. R. Schodder and F. K. Schröder. Acustica, 4, 519 (1954).Google Scholar
  74. 74.
    Lacam, A. J. Rech. CNRS, 34, 25 (1965).Google Scholar
  75. 75.
    Lacy, L. L. and A. C. Daniel. J. Acoust. Soc. Amer. 52, 189 (1972).Google Scholar
  76. 76.
    Lamb, J., ‘Thermal relaxation in liquids’, Physical Acoustics, Vol. II. part A, pp 203–280. Edited by W. P. Mason. Academic Press: New York (1965).Google Scholar
  77. 77.
    Larson, E. U., D. G. Naugle and T. W. Adair. J. Chem. Phys. 54, 2429 (1971).Google Scholar
  78. 78.
    Lestz, S. S. and R. N. Grove. J. Chem. Phys. 43, 883 (1965).Google Scholar
  79. 79.
    Litovitz, T. A. and C. M. Davis. ‘Structural and shear relaxation in liquids’. Physical Acoustics, Vol. II. part A, pp 282–349. Edited by W. P. Mason. Academic Press: New York (1965).Google Scholar
  80. 80.
    Mason, E. A. and T. H. Spurling. The Virial Equation of State. Pergamon: Oxford (1969).Google Scholar
  81. 81.
    Mason, W. P. Piezoelectric Crystals and their Application to Ultrasonics. Van Nostrand: New York (1950).Google Scholar
  82. 82.
    Matheson, A. J. Molecular Acoustics. Wiley-Interscience: London (1971).Google Scholar
  83. 83.
    McSkimin, H. J. J. Acoust. Soc. Amer. 22, 413 (1950).Google Scholar
  84. 84.
    McSkimin, H. J. J. Acoust. Soc. Amer. 33, 12 (1961).Google Scholar
  85. 85.
    McSkimin, H. J. ‘Ultrasonic methods for measuring the mechanical properties of liquids and solids’. Physical Acoustics, edited by W. P. Mason, Vol. I, pp 271–334. Academic Press: New York (1964).Google Scholar
  86. 86.
    Meyer, E. and G. Sessler. Z. Phys. 149, 15 (1957).Google Scholar
  87. 87.
    Michels, A., B. Blaisse and C. Michels. Proc. Roy. Soc. (London) A, 160, 358 (1937).Google Scholar
  88. 88.
    Michels, A., A. Byl and C. Michels. Proc. Roy. Soc. (London) A, 160, 376 (1937).Google Scholar
  89. 89.
    Michels, A., J. M. Levelt and G. J. Wolkers. Physica, 24, 769 (1958).Google Scholar
  90. 90.
    Mikhailenko, S. A. and Y. P. Blagoy. Russ. J. Phys. Chem. 42, 566 (1968).Google Scholar
  91. 91.
    Mikhailenko, S. A., Y. P. Blagoy, A. E. Butko and V. A. Sorokin. Ukr. Fiz. Zh. 15, 563 (1970).Google Scholar
  92. 92.
    Mikhailenko, S. A., Y. P. Blagoy, A. E. Butko and V. A. Sorokin. Ukr. Fiz. Zh. 15, 571 (1970).Google Scholar
  93. 93.
    Mistura, L. Proceedings of the Internation School of Physics Enrico Fermi, Course L.I, edited by M. S. Green, pp 563–577, Academic Press: New York (1971).Google Scholar
  94. 94.
    Mistura, L. J. Chem. Phys. 57, 2311 (1972).Google Scholar
  95. 95.
    Naugle, D. G. J. Chem. Phys. 56, 5730 (1972).Google Scholar
  96. 96.
    Nozdrev, V. F. Application of Ultrasonics in Molecular Physics. Gordon and Breach: New York (1963).Google Scholar
  97. 97.
    Papadakis, E. P. J. Acoust. Soc. Amer. 42, 1045 (1967).Google Scholar
  98. 98.
    Pecceu, W. and W. Van Dael. Physica, 63, 154 (1973).Google Scholar
  99. 99.
    Pecceu, W. Doctoral Thesis, University of Leuven (1973).Google Scholar
  100. 100.
    Pine, A. S. J. Chem. Phys. 51, 5171 (1969).Google Scholar
  101. 101.
    Pitzer, K. S., D. Z. Lipmann, R. F. Curl, C. M. Huggins and D. E. Petersen. J. Amer. Chem. Soc. 77, 3433 (1955).Google Scholar
  102. 102.
    Plumb, H. H. and G. Cataland. Science, 150, 155 (1965).Google Scholar
  103. 103.
    Plumb, H. H. J. Res. Nat. Bur. Stand. 69A, 375 (1965).Google Scholar
  104. 104.
    Rao, M. R., Indian J. Phys. 14, 109 (1940).Google Scholar
  105. 105.
    Richardson, E. G. Ultrasonic Physics, Elsevier: Amsterdam (1962).Google Scholar
  106. 106.
    Rowlinson, J. S. Liquids and Liquid Mixtures, 2nd ed. Butterworths: London (1969).Google Scholar
  107. 107.
    Schaaffs, W. Molekularakustik, Springer: Berlin (1963).Google Scholar
  108. 108.
    Schaaffs, W. Landolt-Börnstein Tables, Group II, Vol. V, ‘Molecular acoustics’, Springer: Berlin (1967).Google Scholar
  109. 109.
    Sell, H. Z. Tech. Phys. 18, 3 (1937).Google Scholar
  110. 110.
    Sette, D. ‘Dispersion and absorption of sound waves in liquids and mixtures of liquids’, Encyclopedia of Physics, Vol. XI, 1 Acoustics I, pp 275–359. Edited by S. Flügge. Springer: Berlin (1961).Google Scholar
  111. 111.
    Sette D. Proceedings of the International School of Physics Enrico Fermi, Course LI, pp 508–562. edited by M. S. Green. Academic Press: New York (1971).Google Scholar
  112. 112.
    Shields, F. D., K. P. Lee and W. J. Wiley. J. Acoust. Soc. Amer. 37, 724 (1965).Google Scholar
  113. 113.
    Staveley, L. A. K., W. I. Tupman and K. R. Hart. Trans. Faraday Soc. 51, 323 (1955).Google Scholar
  114. 114.
    Stevens, B. Collisional Activation in Gases, Pergamon: Oxford (1967).Google Scholar
  115. 115.
    Stewart, J. L. Rev. Sci. Instrum. 17, 59 (1946).Google Scholar
  116. 116.
    Stewart, J. L. and E. S. Stewart. J. Acoust. Soc. Amer. 24, 22 (1952).Google Scholar
  117. 117.
    Stewart, R. B. and V. J. Johnson. ‘A compendium of the properties of materials at low temperature (Phase II)’, Wadd. Tech. Rep. No. 60-56, Part IV.Google Scholar
  118. 118.
    Thoen, J., E. Vangeel and W. Van Dael. Physica, 45, 339 (1969).Google Scholar
  119. 119.
    Thoen, J., E. Vangeel and W. Van Dael. Physica, 52, 205 (1971).Google Scholar
  120. 120.
    Touloukian, Y. S. (Ed).. Thermophysical Properties of Matter, Vol. VI. IFI/Plenum: New York (1970).Google Scholar
  121. 121.
    Truell, R., C. Elbaum and B. Chick. Ultrasonic Methods in Solid State Physics. Academic Press: New York (1969).Google Scholar
  122. 122.
    Truesdell, C. J. Rat. Mech. Anal. 2, 643 (1953).Google Scholar
  123. 123.
    Van Dael, W. and A. Van Itterbeek. Chap. 7 in Physics of High Pressures and the Condensed Phase, Edited by A. Van Itterbeek. North Holland: Amsterdam (1965).Google Scholar
  124. 124.
    Van Dael, W. and E. Vangeel. Proceedings of the First International Conference on Calorimetry and Thermodynamics, Warsaw, 1969, p. 555.Google Scholar
  125. 125.
    Van Dael, W., A. Van Itterbeek. A. Cops and J. Thoen. Physica, 32, 611 (1968).Google Scholar
  126. 126.
    Van Itterbeck, A. and W. De Laet Physica, 24, 59 (1958).Google Scholar
  127. 127.
    Van Itterbeek, A. and W. H. Keesom. Commun. Kakerlingh Onnes Lab. Univ. Leiden, No. 209c (1931).Google Scholar
  128. 128.
    Van Itterbeek, A. and J. Nihoul. Acustica, 5, 142 (1955).Google Scholar
  129. 129.
    Van Ness, H. C. Classical Thermodynamics of Non-electrolyte Solutions. Pergamon: Oxford (1964).Google Scholar
  130. 130.
    Vangeel, E. and W. Van Dael. (To be published).Google Scholar
  131. 131.
    Wada, Y. J. Phys. Soc, Japan. 4, 280 (1949).Google Scholar
  132. 132.
    Williams, J. and J. Lamb. J. Acoust. Soc. Amer. 30, 308 (1958).Google Scholar
  133. 133.
    Williamson, R. C. and C. E. Chase. Phys. Rev. 176, 285 (1968).Google Scholar
  134. 134.
    Whitney, W. M. and C. E. Chase. Phys. Rev. 158, 200 (1967).Google Scholar
  135. 135.
    Wong, L. Y. and A. Anderson. J. Opt. Soc. Amer. 62, 1112 (1972).Google Scholar
  136. 136.
    Zink, H., F. Nys and W. Van Dael. (To be published).Google Scholar

Copyright information

© Springer Science+Business Media New York 1968

Authors and Affiliations

  • W. Van Dael
    • 1
  1. 1.Laboratorium voor MolekuulfysikaUniversiteit teLeuvenHeverleeBelgium

Personalised recommendations