Advertisement

The Compression of Liquids

  • E. Whalley
Chapter

Abstract

Methods for the determination of the density of liquids can be divided into three classes as follows.
  1. 1.

    Methods in which the density is measured in terms of the fundamental physical standards of measurement.

     
  2. 2.

    Methods in which it is measured relative to the density of a reference liquid or solid. Usually, although not always, the density of the reference liquid or solid will have been determined either directly or via intermediate liquids by a method in category 1.

     
  3. 3.

    Methods in which the change of density of a liquid, caused by an impressed change of the state of the liquid such as temperature, pressure, magnetic or electric field, etc., is measured. In these methods, either the change of volume is measured relative to the change of volume of the containing vessel or the change of density is measured relative to the change of density of a float or sinker.

     
  4. 4.

    Methods in which the volume, or more usually the change of volume, is deduced from measurements other than the direct measurement of change.

     

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

XVII. References

  1. 1.
    Adam, N. K. The Physics and Chemistry of Surfaces, third edition. Oxford University Press: London (1941).Google Scholar
  2. 2.
    Adams, L. H. J. Amer. Chem. Soc. 53, 3769 (1931).Google Scholar
  3. 3.
    Adams, L. H., E. D. Williamson and J. Johnston. J. Amer. Chem. Soc. 41, 12 (1919).Google Scholar
  4. 4.
    Adams, W. A. and K. J. Laidler. Canad. J. Chem. 45, 123 (1967).Google Scholar
  5. 5.
    Adams, W. A. and E. Whalley. Unpublished work.Google Scholar
  6. 6.
    Aimé G. Ann. Chim. (Phys.), 8, 257 (1843).Google Scholar
  7. 7.
    Alwani, Z. and G. M. Schneider. Ber. Bunsenges. Phys. Chem. 73, 294 (1969).Google Scholar
  8. 8.
    Amagat, E. H. Ann. Chim. (Phys.), 11, 520 (1877).Google Scholar
  9. 9.
    Amagat, E. H. C.R. Acad. Sci., Paris, 103, 429 (1886).Google Scholar
  10. 10.
    Amagat, E. H. Ann. Chim. (Phys.), 29, 68 (1893).Google Scholar
  11. 11.
    American Society of Mechanical Engineers. Pressure-viscosity report, I: Viscosity and density of over 40 lubricating fluids of known composition at pressures to 150000 psi and temperatures to 425°F, New York (1953).Google Scholar
  12. 12.
    Babb, S. E. ‘Techniques of high pressure experimentation’, in Technique of Inorganic Chemistry, Vol. IV, Ed. H. B. Jonassen and A. Weissberger, p 83. Interscience: New York (1966).Google Scholar
  13. 13.
    Babb, S. E., G. J. Scott, C. D. Epp and S. L. Robertson. Rev. Sci. Instrum., 40, 670 (1969).Google Scholar
  14. 14.
    Baker, E. H. J. Chem. Soc. 464 (1962).Google Scholar
  15. 15.
    Baliga, B. T. and E. Whalley. J. Phys. Chem. 73, 654 (1969).Google Scholar
  16. 16.
    Bannard, J. E. and G. J. Hills. High Temp. High Press. 1, 571 (1969).Google Scholar
  17. 17.
    Barrett, C. S. and T. B. Massalski. Structures of Metals, third edition, Chapter 20. McGraw-Hill: New York (1966).Google Scholar
  18. 18.
    Barton, A. F. M. J. Chem. Educ. 48, 161 (1971).Google Scholar
  19. 19.
    Barton, A. F. M., G. J. Hills, D. J. Fray and J. W. Tomlinson. High Temp. High Press, to be published (1972). Referred to by Barton18.Google Scholar
  20. 20.
    Barus, C. Amer. J. Sci. 39, 478 (1890).Google Scholar
  21. 21.
    Basset, J. C. R. Acad. Sci., Paris, 185, 343 (1927).Google Scholar
  22. 22.
    Basset, J. C.R. Acad. Sci., Paris, 191, 928 (1930).Google Scholar
  23. 23.
    Bauer, N. and S. Z. Lewin. ‘Determination of density’, Chapter IV of Technique of Organic Chemistry, Vol. I: third edition, Physical Methods Part I, Ed. A. Weissberger, Interscience: New York (1959).Google Scholar
  24. 24.
    Beams, J. W. and A. M. Clarke. Rev. Sci. Instrum. 33, 750 (1962).Google Scholar
  25. 25.
    Beattie, J. A. Proc. Amer. Acad. Arts Sci. 69, 389 (1934).Google Scholar
  26. 26.
    Benedict, M. J. Amer. Chem. Soc. 59, 2224 (1937).Google Scholar
  27. 27.
    Benedict, M. J. Geol. 47, 252 (1939).Google Scholar
  28. 28.
    Berkeley, Earl of, and C. V. Burton. Phil. Mag., 6th Ser., 32, 153 (1916).Google Scholar
  29. 29.
    Bett, K. E., K. E. Weale and D. M. Newitt. Brit. J. Appl. Phys. 5, 243 (1954).Google Scholar
  30. 30.
    Blagoi, Yu. P. and V. A. Sorokin. Zh. Fiz. Khim. 42, 546 (1968). English translation Russ. J. Phys. Chem. 42, 290 (1968).Google Scholar
  31. 31.
    Boelhouwer, J. W. M. Physica, 26, 1021 (1960).Google Scholar
  32. 32.
    Boiko, N. V. and B. V. Voityuk. ‘Experimental investigation of the density of liquid hydrocarbons by hydrostatic weighing on a tensometric balance’ in Thermophysical Properties of Gases and Liquids, No. 1, Ed. V. A. Rabinovich (1968). English translation published by Israel Program for Scientific Translations: Jerusalem (1970).Google Scholar
  33. 33.
    Bradfield, G. ‘Use in industry of elasticity measurements in metals with the help of mechanical vibrations’. National Physical Laboratory Notes on Applied Science No. 30, p 134. Her Majesty’s Stationery Office: London (1966).Google Scholar
  34. 34.
    Bradshaw, A. and K. E. Schleicher. Deep-Sea Research, 17, 691 (1970).Google Scholar
  35. 35.
    Bridgman, P. W. Proc. Amer. Acad. Arts Sci. 44, 201 (1909).Google Scholar
  36. 36.
    Bridgman, P. W. Proc. Amer. Acad. Arts Sci. 44, 221 (1909).Google Scholar
  37. 37.
    Bridgman, P. W. Proc. Amer. Acad. Arts Sci. 44, 255 (1909).Google Scholar
  38. 38.
    Bridgman, P. W. Proc. Amer. Acad. Arts Sci. 47, 321 (1911).Google Scholar
  39. 39.
    Bridgman, P. W. Proc. Amer. Acad. Arts Sci. 47, 347 (1911).Google Scholar
  40. 40.
    Bridgman, P. W. Proc. Amer. Acad. Arts Sci. 47, 441 (1911).Google Scholar
  41. 41.
    Bridgman, P. W. Proc. Amer. Acad. Arts Sci. 48, 309 (1912).Google Scholar
  42. 42.
    Bridgman, P. W. Proc. Amer. Acad. Arts Sci. 49, 3 (1913).Google Scholar
  43. 43.
    Bridgman, P. W. Proc. Amer. Acad. Arts Sci. 58, 165 (1923).Google Scholar
  44. 44.
    Bridgman, P. W. Rec. Trav. Chim. Pays-Bas, 42, 568 (1923).Google Scholar
  45. 45.
    Bridgman, P. W. Proc. Amer. Acad. Arts Sci. 59, 173 (1924).Google Scholar
  46. 46.
    Bridgman, P. W. Proc. Amer. Acad. Arts Sci. 61, 57 (1926).Google Scholar
  47. 47.
    Bridgman, P. W. Z. Kristallogr. 67, 363 (1928).Google Scholar
  48. 48.
    Bridgman, P. W. Proc. Amer. Acad. Arts Sci. 66, 185 (1931).Google Scholar
  49. 49.
    Bridgman, P. W. Proc. Amer. Acad. Arts Sci. 70, 1 (1935).Google Scholar
  50. 50.
    Bridgman, P. W. Proc. Amer. Acad. Arts Sci. 74, 1 (1940).Google Scholar
  51. 51.
    Bridgman, P. W. Proc. Amer. Acad. Arts Sci. 74, 21 (1940).Google Scholar
  52. 52.
    Bridgman, P. W. Proc. Amer. Acad. Arts Sci. 74, 399 (1942).Google Scholar
  53. 54.
    Bridgman, P. W. Proc. Amer. Acad. Arts Sci. 74, 425 (1942).Google Scholar
  54. 54.
    Bridgman, P. W. Proc. Amer. Acad. Arts Sci. 76, 9 (1945).Google Scholar
  55. 55.
    Bridgman, P. W. Proc. Amer. Acad. Arts Sci. 76, 71 (1948).Google Scholar
  56. 56.
    Bridgman, P. W. Proc. Amer. Acad. Arts Sci. 76, 55 (1948).Google Scholar
  57. 57.
    Bridgman, P. W. The Physics of High Pressure, Bell: London (1949).Google Scholar
  58. 58.
    Bridgman, P. W. Proc. Amer. Acad. Arts Sci. 77, 129 (1949).Google Scholar
  59. 59.
    Bridgman, P. W. Proc. Amer. Acad. Arts Sci. 77, 189 (1949).Google Scholar
  60. 60.
    Bridgman, P. W. J. Chem. Phys. 19, 203 (1951).Google Scholar
  61. 61.
    Briggs, L. J. J. Appl. Phys. 21, 721 (1950).Google Scholar
  62. 62.
    Briggs, L. J. J. Chem. Phys. 19, 970 (1951).Google Scholar
  63. 63.
    Buchmann, E. Z. Phys. Chem. A, 163, 461 (1933).Google Scholar
  64. 64.
    Burlew, J. S. J. Amer. Chem. Soc. 62, 681 (1940).Google Scholar
  65. 65.
    Burlew, J. S. J. Amer. Chem. Soc. 62, 690 (1940).Google Scholar
  66. 66.
    Burlew, J. S. J. Amer. Chem. Soc. 62, 696 (1940).Google Scholar
  67. 67.
    Burnham, C. W., J. R. Holloway and N. F. Davis. Amer. J. Sci. 267-A, 70 (1969).Google Scholar
  68. 68.
    Burnham, C. W. and V. J. Wall. Private communication (1972).Google Scholar
  69. 69.
    Cailletet, L. C.R. Acad. Sci., Paris, 75, 77 (1872).Google Scholar
  70. 70.
    Cailletet, L. Ann. Chim. (Phys.), 15, 132 (1878).Google Scholar
  71. 71.
    Canton, J. Phil. Trans. 52, 640 (1762).Google Scholar
  72. 72.
    Canton, J. Phil. Trans. 54, 261 (1764).Google Scholar
  73. 73.
    Carnazzi, P. Nuovo Cim. 5, 180 (1903).Google Scholar
  74. 74.
    Cheng, P. Y. and H. K. Schachman. J. Amer. Chem. Soc. 77, 498 (1955).Google Scholar
  75. 75.
    Cho, S., J. ‘The pressure, volume, and temperature behavior of water at negative pressures’, Ph.D. Thesis, University of Missouri, University Microfilms, Ann Arbor, Michigan, USA (1970).Google Scholar
  76. 76.
    Cohen, E. and A. K. W. A. van Lieshout. Proc. Acad. Sci. Amst. 39, 38 (1936).Google Scholar
  77. 77.
    Conférence Générale des Poids et Mesures (Troisième), Comptes Rendus des Sciences de la Conférence Générale des Poids et Mesures, 38 (1901).Google Scholar
  78. 78.
    Coolidge, W. D. and R. D. Mailey. (1910). Unpublished work quoted by Keyes (1933).Google Scholar
  79. 79.
    Cowper, A.D. and G. Tammann. Z. Phys. Chem. 68, 281 (1910).Google Scholar
  80. 80.
    Crawford, R. K. and W. B. Daniels. J. Chem. Phys. 50, 3171 (1969).Google Scholar
  81. 81.
    Cruickshank, A. J. B., Th. Ackermann and P. A. Giguère’. ‘Heat capacity of liquids and solutions near room temperature’, Chapter 12 of Experimental Thermodynamics, Vol. I: Calorimetry of Non-Reacting Systems, Ed. J. P. McCullough and D. W. Scott, Butterworths: London (1968).Google Scholar
  82. 82.
    Cutler, W. G., R. H. McMickle, W. Webb and R. W. Schiessler. J. Chem. Phys. 29, 727 (1958).Google Scholar
  83. 83.
    Davis, L. A. and R. B. Gordon. J. Chem. Phys. 46, 2650 (1967).Google Scholar
  84. 84.
    Dayantis, J. C.R. Acad. Sci., Paris, 267C, 223 (1968).Google Scholar
  85. 85.
    Diaz Peña, M. and B. Cavero. Anal. Fis. Quim. 60-B, 357 (1964).Google Scholar
  86. 86.
    Diaz Peña, M. and M. L. McGlashan. Trans. Faraday Soc. 55, 2018 (1959).Google Scholar
  87. 87.
    Downer, L. and K. E. S. Gardiner. J. Inst. Petrol. 58, 1 (1972).Google Scholar
  88. 88.
    Doolittle, A. K. and D. B. Doolittle. Amer. Inst. Chem. Engrs Jnl, 6, 153 (1960).Google Scholar
  89. 89.
    Doolittle, A. K., I. Simon and R. M. Cornish. Amer. Inst. Chem. Engrs Jnl, 6, 150 (1960).Google Scholar
  90. 90.
    Duedall, I. W. and S. Paulowich. Rev. Sci. Instrum. 44. 120 (1973).Google Scholar
  91. 91.
    Dugdale, J. S. and F. E. Simon. Proc. Roy. Soc. A, 218, 291 (1953).Google Scholar
  92. 92.
    Eduljee, H. E., D. M. Newitt and K. E. Weale. J. Chem. Soc. 3086 (1951).Google Scholar
  93. 93.
    Essex, H. Z. Anorg. Chem. 88, 189 (1914).Google Scholar
  94. 94.
    Ewing, M. B., K. N. Marsh and R. H. Stokes. J. Chem. Thermodynamics, 4, 637 (1972).Google Scholar
  95. 95.
    Fahey, P. F., D. W. Kupke and J. W. Beams. Proc. Nat. Acad. Sci. Wash. 63, 548 (1969).Google Scholar
  96. 96.
    Franck, E. U., M. Brose and K. Mangold, Prog. Int. Res. Thermodyn. Transport Prop. (January 1962), p 159. Ed. J. F. Masi and D. H. Tsai, American Society of Mechanical Engineers: New York (1962).Google Scholar
  97. 97.
    Franck, E. U. and K. Tödheide. Z. Phys. Chem., N. F. 22, 232 (1959).Google Scholar
  98. 98.
    Gibson, R. E. J. Amer. Chem. Soc. 56, 4 (1934).Google Scholar
  99. 99.
    Gibson, R. E. J. Amer. Chem. Soc. 57, 284 (1935).Google Scholar
  100. 100.
    Gibson, R. E. J. Amer. Chem. Soc. 59, 1521 (1937).Google Scholar
  101. 101.
    Gilchrist, A., J. E. Earley and R. H. Cole. J. Chem. Phys. 26, 196 (1957).Google Scholar
  102. 102.
    Goldman, K. Brit. J. Appl. Phys. 9, 40 (1958).Google Scholar
  103. 103.
    Golubev, I. F. Tr. Gos. Inst. Azo. Prom. No. 7, p 47. Goskhimizdat: Moscow (1957). A short description in English is given in Tsiklis236, p 409Google Scholar
  104. 104.
    Goodwin, R. D. J. Res. Nat. Bur. Stand. 65C, 231 (1961)Google Scholar
  105. 105.
    Goodwin, R. D., and L. A. Weber. J. Res. Nat. Bur. Stand. 73A, 1 (1969).Google Scholar
  106. 106.
    Goodwin, R. D. and L. A. Weber. J. Res. Nat. Bur. Stand. 73A, 15 (1969).Google Scholar
  107. 107.
    Greenwood, H. J. Amer. J. Sci., Schairer Vol., 267A, 191 (1969).Google Scholar
  108. 108.
    Grilly, E. R. Phys. Rev. 149, 97 (1966).Google Scholar
  109. 109.
    Grilly, E. R. J. Low Temp. Phys. 4, 615 (1971).Google Scholar
  110. 110.
    Grindley, T. and J. E. Lind. J. Chem. Phys. 54, 3983 (1971).Google Scholar
  111. 111.
    Guggenheim, E. A. Thermodynamics, fourth edition. North-Holland: Amsterdam (1959).Google Scholar
  112. 111a.
    Harvis, R. W. and G. T. Clayton, Phys. Rev. 153, 229 (1967).Google Scholar
  113. 112.
    Harrison, D. and E. A. Moelwyn-Hughes. Proc. Roy. Soc. A, 239, 230 (1957).Google Scholar
  114. 113.
    Hayward, A. T. J. Acta Imeko, 249 (1964).Google Scholar
  115. 114.
    Hayward, A. T. J. J. Phys. D: Appl. Phys. 4, 938 (1971).Google Scholar
  116. 115.
    Hayward, A. T. J. J. Phys. D: Appl. Phys. 4, 951 (1971).Google Scholar
  117. 116.
    Heath, J. B. R. and E. Whalley. Unpublished work (1967).Google Scholar
  118. 117.
    Heydemann, P. L. M. and J. C. Houck. ‘Ultrasonic and dilatometric measurements at very high pressures’ in Accurate Characterization of the High-pressure Environment. Ed. E. C. Lloyd, US Nat. Bur. Stand. Spec. Publ. No. 326, p 11 (1971).Google Scholar
  119. 118.
    Hill, R. W. and O. V. Lounasmaa. A, 252, 44 (1960).Google Scholar
  120. 119.
    Holborn, L. and J. Otto. Z. Phys. 30, 320 (1924).Google Scholar
  121. 120.
    Holder, G. A. and E. Whalley. Trans. Faraday Soc. 58, 2095 (1962).Google Scholar
  122. 121.
    Holder, G. A. and E. Whalley. Trans. Faraday Soc. 58, 2108 (1962).Google Scholar
  123. 122.
    Holloway, J. R. ‘Internally heated pressure vessels’ in Research Techniques for High Pressure and High Temperature, Ed. G. C. Ulmer, p 217. Springer: Berlin (1971).Google Scholar
  124. 123.
    Holser, W. T. and G. C. Kennedy. Part III, Amer. J. Sci. 256, 744 (1958).Google Scholar
  125. 124.
    Holser, W. T. and G. C. Kennedy. Part IV, Amer. J. Sci. 256, 744 (1958).Google Scholar
  126. 125.
    Houck, J. C. and P. L. M. Heydemann. J. Res. Nat. Bur. Stand. 75A, 121 (1971).Google Scholar
  127. 126.
    Hyde, J. H. Proc. Roy. Soc. A, 97, 240 (1920).Google Scholar
  128. 127.
    Van Itterbeek, A. and O. Verbeke, Cryogenics, 1, 77 (1960).Google Scholar
  129. 128.
    Jepson, W. B. and J. S. Rowlinson. J. Chem. Phys. 23, 1599 (1955).Google Scholar
  130. 129.
    Jessup, R. S. J. Res. Nat. Bur. Stand. 5, 985 (1930).Google Scholar
  131. 130.
    Jessup, R. S. J. Appl. Phys. 23, 543 (1952).Google Scholar
  132. 131.
    Johnston, H. L., W. E. Keller and A. S. Friedman. J. Amer. Chem. Soc. 76, 1482 (1954).Google Scholar
  133. 132.
    Jolley, E. L. (1968). Personal communication to Millero, Curry and Drost-Hansen169.Google Scholar
  134. 133.
    Joule, J. P. Phil. Mag. 17, 364 (1858).Google Scholar
  135. 134.
    Kay, R. L. ‘Transference number measurements’ in Techniques in Electrochemistry, Vol. II, Ed. SA. Salkind, and E. Yeager, Interscience: New York, in press (1972).Google Scholar
  136. 135.
    Keesom, W. H. and A. P. Keesom. Proc. Acad. Sci. Amst. 36, 612 (1933). Also issued as Commun. Phys. Lab. Univ. Leiden No. 224d. Google Scholar
  137. 136.
    Keesom, W. H. and A. P. Keesom, Proc. Acad. Sci. Amst. 36, 612 (1933). Also issued as Commun. Phys. Lab. Univ. Leiden No. 224e. Google Scholar
  138. 137.
    Kell, G. S. J. Chem. Engng Data, 15, 119 (1970).Google Scholar
  139. 138.
    Kell, G. S. and E. Whalley. Phil. Trans. A, 258, 565 (1965).Google Scholar
  140. 139.
    Kell, G. S., G. E. McLaurin and E. Whalley. J. Chem. Phys. 48, 3805 (1968).Google Scholar
  141. 140.
    Kennedy, G. C. Amer. J. Sci. 248, 540 (1950).Google Scholar
  142. 141.
    Kennedy, G. C. Amer. J. Sci. 255, 724 (1957).Google Scholar
  143. 142.
    Kennedy, G. C., W. L. Knight and W. T. Holser. Amer. J. Sci. 256, 590 (1958).Google Scholar
  144. 143.
    Kennedy, G. C. and LaMori, P. N. Progress in Very High Pressure Research, Ed. F. P. Bundy, W. R. Hibbard and H. M. Strong, p 304. Wiley: New York (1961).Google Scholar
  145. 144.
    Kerr, S. L., L. H. Kessler and M. B. Garnet. Trans. Amer. Soc. Mech. Engrs, 72, 1143 (1950).Google Scholar
  146. 145.
    Keyes, F. G. Proc. Amer. Acad. Arts Sci. 68, 505 (1933).Google Scholar
  147. 145a.
    Keyes, F. G. and W. A. Felsing, J. Amer. Chem. Soc. 41, 589 (1919).Google Scholar
  148. 146.
    Korshunov, Yu. S., A. P. Scnchenkov, E. I. Asinovskii and A. T. Kunavin, Teplofiz. Vysok. Temp. 8, 1288 (1970). English translation in High Temperature (Moscow), 8, 1207 (1970).Google Scholar
  149. 147.
    Köster, H. von and E. U. Franck. Ber. Bunsenges. Phys. Chem. 73, 716 (1969).Google Scholar
  150. 148.
    Kumagai, A. and T. Toriumi. J. Chem. Engng Data, 16, 293 (1971).Google Scholar
  151. 149.
    Kuriakose, A. K. and E. Whalley. J. Chem. Phys. 48, 2025 (1968).Google Scholar
  152. 150.
    Lamb, A. B. and R. E. Lee, J. Amer. Chem. Soc. 35, 1668 (1913).Google Scholar
  153. 151.
    Lentz, H. Rev. Sci. Instrum. 40, 371 (1969).Google Scholar
  154. 152.
    Lentz, H. and E. U. Franck. Ber. Bunsenges. Phys. Chem. 73, 28 (1969).Google Scholar
  155. 153.
    Levich, V. G. Physicochemical Hydrodynamics, p 674. Translated by Scripta Technica, Inc. Prentice-Hall Inc.: New Jersey (1962).Google Scholar
  156. 154.
    Lo, H. Y. and L. I. Stiel. Industr. Engng Chem. Fundamentals, 8, 713 (1969).Google Scholar
  157. 155.
    MacDonald, D. B. and J. B. Hyne. Canad. J. Chem. 49, 611 (1971).Google Scholar
  158. 156.
    MacDonald, J. R. J. Chem. Phys. (in press) (1972).Google Scholar
  159. 157.
    Madigosky, W. M. Rev. Sci. Instrum. 37, 227 (1966).Google Scholar
  160. 158.
    Maier, S. and E. U. Franck. Ber. Bunsenges. Phys. Chem. 70, 639 (1966).Google Scholar
  161. 159.
    Malbrunot, P. and B. Vodar. High Temp. High Pres. 3, 225 (1971).Google Scholar
  162. 160.
    Malcolm, G. N. and G. L. D. Ritchie. J. Phys. Chem. 66, 852 (1962).Google Scholar
  163. 161.
    Mangold, K. and E. U. Franck. Ber. Bunsenges. Phys. Chem. 73, 21 (1969).Google Scholar
  164. 162.
    Marenko, I. N., V. A. Ivanov and S. M. Stishov. Dokl. Akad. Nauk SSSR, 188, 564 (1969). English translation in Soviet Phys. Doklady, 14, 924 (1970).Google Scholar
  165. 163.
    Meyer, J. Z. Elektrochem. 17, 743 (1911).Google Scholar
  166. 164.
    Meyer, J. Abh. Bunsenges. Phys. Chem. 3, Nr 1 (1911).Google Scholar
  167. 165.
    Michels, A., B. Blaisse and C. Michels. Proc. Roy. Soc. A, 160, 358 (1937).Google Scholar
  168. 166.
    Michels, A. and C. Michels. Proc. Roy. Soc. A, 153, 201 (1935).Google Scholar
  169. 167.
    Michels, A., C. Michels and H. Wouters. Proc. Roy. Soc. A, 153, 214 (1936).Google Scholar
  170. 168.
    Michels, A., T. Wassenaar and Th. N. Zwietering. Physica, 28, 67 (1952).Google Scholar
  171. 169.
    Millero, F. J., R. W. Curry and W. Drost-Hansen. J. Chem. Engng Data, 14, 422 (1969).Google Scholar
  172. 170.
    Millero, F. J., J. H. Knox and R. T. Emmet. J. Solution Chem. In press (1972).Google Scholar
  173. 171.
    Millero, F. J. and F. K. Lepple. J. Chem. Phys. 54, 946 (1971).Google Scholar
  174. 172.
    Millet, M. and G. Jenner. J. Chim. Phys. 67, 1667 (1970).Google Scholar
  175. 173.
    Millet, M. and G. Jenner. J. Chim. Phys. 67, 1766 (1970).Google Scholar
  176. 174.
    Montgomery, P. W. Rev. Sci. Instrum. 37, 1526 (1966).Google Scholar
  177. 175.
    Mopsik, F. I. J. Res. Nat. Bur. Stand. 71A, 287 (1967).Google Scholar
  178. 176.
    Nelson, R. R., W. Webb, and J. A. Dixon. J. Chem. Phys. 33, 1756 (1960).Google Scholar
  179. 177.
    Newhall, D. H. and L. H. Abbot. Proc. Inst. Mech. Engrs, 182, Pt 3c, 288 (1968).Google Scholar
  180. 178.
    Newitt, D. M. The Design of High Pressure Plant and the Properties of Fluids at High Pressure, Clarendon Press: Oxford, Chapters VII and XVIII (1940).Google Scholar
  181. 179.
    von Nieuwenburg, C. J. and H. B. Blumendal. Rec. Trav. Chim. Pays-Bas, 51, 707 (1932).Google Scholar
  182. 180.
    Oersted, M. Ann. Chim. (Phys.), 22, 192 (1823).Google Scholar
  183. 181.
    Parsons, C. A. and S. S. Cook. Proc. Roy. Soc. 85, 332 (1911).Google Scholar
  184. 182.
    Pavlovich, N. V. and D. L. Timrot. Teploenergetika, No. 4, 69 (1958).Google Scholar
  185. 183.
    Perkins, J. Phil. Trans. 110, 324 (1820).Google Scholar
  186. 184.
    Perkins, J. Phil. Trans. 116, 541 (1826).Google Scholar
  187. 185.
    Pistorius, C. W. F. T. Polymer, 5, 315 (1964).Google Scholar
  188. 186.
    Pollard, L. J., M. L. Crowe and W. Strauss. J. Chem. Engng Data, 16, 134 (1971).Google Scholar
  189. 187.
    Postill, D. R., R. G. Ross and N. E. Cusack, Advanc. Phys. 16, 493 (1967).Google Scholar
  190. 188.
    Presnall, P. C. J. Geophys. Res. 74, 6026 (1969).Google Scholar
  191. 189.
    Presnall, P. C. ‘Compressibility measurements of gases using externally heated pressure vessels’ in Research Techniques for High Temperature, Ed. G. C. Ulmer, p 259. Springer: Berlin (1971).Google Scholar
  192. 190.
    Pribadi K.S. ‘A radio frequency moving boundary detector’, J. Solution Chem. (in press) (1972). Kay134 also describes the method.Google Scholar
  193. 191.
    Ramsay, W. and S. Young. Proc. Roy. Soc. 42, 3 (1887).Google Scholar
  194. 192.
    Ramsay, W. and S. Young. Phil. Mag. 23, 435 (1887).Google Scholar
  195. 193.
    Razumikhin, V. N. Trudy Inst. Kom. Standentov. Mer i Izmerit. Prib. 46, 96 (1960). An account is given in Tsiklis236.Google Scholar
  196. 194.
    Richard, A. J., J. Glick and R. Burkat. Anal. Biochem. 37, 378 (1970).Google Scholar
  197. 195.
    Richard, A. J. and K. S. Rogers. Canad. J. Chem. 49, 3956 (1972).Google Scholar
  198. 196.
    Richards, T. W. and G. Jones. J. Amer. Chem. Soc. 31, 158 (1909).Google Scholar
  199. 197.
    Richards, T. W. and R. Shipley. J. Amer. Chem. Soc. 38, 989 (1916).Google Scholar
  200. 198.
    Richards, T. W. and W. N. Stull. ‘New method of determining compressibility’, Publ. Carnegie Instn, 7 (1903). This contains a more detailed account of Richards and Stull199 Google Scholar
  201. 199.
    Richards, T. W. and W. N. Stull. J. Amer. Chem. Soc. 26, 399 (1904).Google Scholar
  202. 200.
    Rigby, H. A. and C. W. Bunn. Nature, Lond. 164, 583 (1949).Google Scholar
  203. 201.
    Roebuck, J. R. and E. E. Miller, Rev. Sci. Instrum. 10, 179 (1939).Google Scholar
  204. 202.
    Rogovaya, I. A. and M. G. Kaganer. Zh. Fiz. Khim. SSSR, 34, 917 (1960). English translation, Russ, J. Phys. Chem. 34, 917 (1960).Google Scholar
  205. 203.
    Rugta, K. K., R. A. Stager and G. P. Mathur. Canad. J. Chem. Engng, 49, 886 (1971).Google Scholar
  206. 204.
    Sage, B. H. and W. N. Lacey. Trans. Amer. Instr. Min. Metall. Engrs, 136, 136 (1940).Google Scholar
  207. 205.
    Saurei, J. and B. Vodar. J. Rech. CNRS, 33, 386 (1955).Google Scholar
  208. 206.
    Schachman, H. K. Ultracentrifugation in Biochemistry, p 32. Academic Press: New York (1959).Google Scholar
  209. 207.
    Schamp, H. W., J. R. Hastings and S. Weissman. Physics of Fluids, 8, 8 (1965).Google Scholar
  210. 208.
    Schornack, L. G. and C. A. Eckert. J. Phys. Chem. 74, 3014 (1970).Google Scholar
  211. 209.
    Seeder, W. A. Thesis, Utrecht (1943), referred to by Boelhouwer31.Google Scholar
  212. 210.
    Sengers, J. H. M. Levelt, Chapter 3 of ‘Physics of High Pressure and the Condensed State’, Ed. A. von Itterbeek, p. 60 North-Holland: Amsterdam (1965).Google Scholar
  213. 211.
    Shakhovskoi, G. P., I A. Lavrov, M. D. Pushkinskii and M. G. Gonikberg. Pribory i Tekh. Eks. 1, 181 (1962). English translation Instr. Exp. Techn. 1, 184 (1962).Google Scholar
  214. 212.
    Sherman, R. H. and F. J. Edeskuty. Annals of Physics, 9, 522 (1960).Google Scholar
  215. 213.
    Simon, F. and F. Kippert. Z. Phys. Chem. 135, 113 (1928).Google Scholar
  216. 214.
    Sirota, A. M. and B. K. Mal’tsev. Teploenergetika, 6, 7 (1959). English translation S-137, Morris D. Friedman, Inc., 1383A Washington St., West Newton 65, Mass, USA.Google Scholar
  217. 215.
    Sjölander, A. ‘Theory of neutron scattering by liquids’, Chapter 7 of Thermal Neutron Scattering, Ed. P. A. Egelstaff. Academic Press: London (1965).Google Scholar
  218. 216.
    Skinner, J. F., E. L. Cussler and R. M. Fuoss. J. Phys. Chem. 72, 1057 (1968).Google Scholar
  219. 217.
    Smith, A. W. Proc. Amer. Acad. Arts Sci. 42, 421 (1906).Google Scholar
  220. 218.
    Smith, L. B. and F. G. Keyes. Proc. Amer. Acad. Arts Sci. 69, 286 (1934).Google Scholar
  221. 219.
    Smyth, F. H. and L. H. Adams. J. Amer. Chem. Soc. 45, 1167 (1923).Google Scholar
  222. 220.
    Snyder, P. S. and J. Winnick. Proceedings of the Fifth Symposium on Thermophysical Properties, p 115. American Society of Mechanical Engineers: New York (1970).Google Scholar
  223. 221.
    Staveley, L. A. K. and D. N. Parham. ‘La compressibilité de la glace, du benzène solide et du cyclohexane solide à leur point de fusion’, in Changements de Phases, p 366. Société de Chimie Physique: Paris (1952).Google Scholar
  224. 222.
    Stewart, J. W. ‘High pressures at low temperatures’, Chapter 10 of Modern Very High Pressure Techniques, Ed. R. H. Wentorf, Butterworths: London (1962).Google Scholar
  225. 223.
    Straty, G. C. and R. Prydz. Rev. Sci. Instrum. 41, 1223 (1970).Google Scholar
  226. 224.
    Streett, W. B. and L. A. K. Staveley. Advanc. Cryogenic Engng, 13, 362 (1968).Google Scholar
  227. 225.
    Stryland, J. C. and A. D. May. Rev. Sci. Instrum. 31, 414 (1960).Google Scholar
  228. 226.
    Suchodski, W. A. Z. Phys. Chem. 74, 257 (1910).Google Scholar
  229. 227.
    Tait, P. G. Proc. Roy. Soc. Edinburgh, 12, 223, 224 (1883).Google Scholar
  230. 228.
    Tait, P. G. Proc. Roy. Soc. Edinburgh, 13, 2 (1884).Google Scholar
  231. 229.
    Tait, P. G. ‘Compressibility of water, glass and mercury,. Report on the scientific results of the voyage of HMS Challenger 1873-76. Ed. C. W. Thomson and J. Murray, Physics and Chemistry, Vol II, Part IV, p 3. HMSO: London (1889).Google Scholar
  232. 230.
    Talbott, A. C. Phil. Mag. 19, 1126 (1935).Google Scholar
  233. 231.
    Tallmadge, J. A. J. Phys. Chem. 75, 583 (1971).Google Scholar
  234. 232.
    Tammann, G. and A. Rühenbeck. Ann. Phys., Lpz. 13, 63 (1932).Google Scholar
  235. 233.
    Tanishita, I. ‘Experimental studies on the specific volume of steam at high temperature and pressure (first report)’. Jap. Soc. Mech. Engrs. Rep. No. 4. (undated).Google Scholar
  236. 234.
    Thomas, W. Progress of International Research on Thermodynamic Transport Properties, (January 1962), Ed. J. F. Masi and D. H. Tsai, p 166. American Society of Mechanical Engineers: New York (1962).Google Scholar
  237. 235.
    Timrot, D. L. and V. P. Borisoglebski. J. Exp. Theor. Phys. USSR, 38, 1729 (1960). English translation Soviet Phys. JETP, 11, 1248 (1960).Google Scholar
  238. 236.
    Tsiklis, D. S. Handbook of Techniques in High-pressure Research and Engineering. Translated by A. Bobrowsky, Plenum: New York (1968).Google Scholar
  239. 237.
    Tyrer, D. J. Chem. Soc. 103, 1675 (1913).Google Scholar
  240. 238.
    Tyrer, D. J. Chem. Soc. 105, 2534 (1914).Google Scholar
  241. 239.
    Ulrich, D. V., D. W. Kupke and J. W. Beams, Proc. Nat. Acad. Sci., Wash. 52, 349 (1964).Google Scholar
  242. 240.
    Verbeke, O. and A. van Itterbeek, Chap. 4 of Physics of High Pressures and the Condensed State, p 99. Ed. A. van Itterbeek, North-Holland: Amsterdam (1965).Google Scholar
  243. 241.
    Vereshchagin, L. F. and V. A. Galaktionov, Pribory i Teckn. Eksperim. 1, 98 (1957). A brief description in English is given in Tsiklis236, p 398.Google Scholar
  244. 242.
    Vilevich, A. V., L. F. Vereshchagin and Ya. A. Kalashnikov. Pribory Tekh. Eksp. 3, 146 (1961). English translation in Instrum. Exptl Techn. 1, 559 (1961).Google Scholar
  245. 243.
    Villey, J. C.R. Acad. Sci., Paris, 206, 655 (1938).Google Scholar
  246. 244.
    Vukalovich, M. P. and V. V. Altunin, Teploenergetika, 6, No. 11, 58 (1959). A long abstract is published in Chem. Abstr. 54, 21905 (1960).Google Scholar
  247. 245.
    Wassenaar, T. Thesis, p 70. University of Amsterdam (1952). Quoted by Sengers210, p 85.Google Scholar
  248. 246.
    Watson, W. Proc. Roy. Soc. Edinburgh, 31, 456 (1911).Google Scholar
  249. 247.
    Weinberger, M. A. and W. G. Schneider, Canad. J. Chem. 30, 847 (1952).Google Scholar
  250. 248.
    Weir, C. E. J. Res. Nat. Bur. Stand. 45, 468 (1950).Google Scholar
  251. 249.
    Weir, C. E. J. Res. Nat. Bur. Stand. 50, 95 (1953).Google Scholar
  252. 250.
    Wells, F. W. and J. G. Roof. Rev. Sci. Instrum. 26, 403 (1955).Google Scholar
  253. 251.
    Westwater, W., H. W. Frantz and J. H. Hildebrand. Phys. Rev. 31, 135 (1928).Google Scholar
  254. 252.
    Whalley, E. Canad. J. Technol. 34, 368 (1956).Google Scholar
  255. 253.
    Whalley, E. Canad. Technol. 34, 268 (1956).Google Scholar
  256. 254.
    Whalley, E. Internat. J. Mech. Sci. 1, 379 (1960).Google Scholar
  257. 255.
    White, J. L. Chapter 8 of Physicochemical Measurements at High Temperatures. Ed. J. O’M. Bockris, J. L. White and J. D. Mackenzie. Butterworths: London (1959).Google Scholar
  258. 256.
    Wiebe, R. and V. L. Gaddy. J. Amer. Chem. Soc. 60, 2300 (1938).Google Scholar
  259. 257.
    Wilson, W. and D. Bradley. Deep-sea Research, 15, 355 (1968).Google Scholar
  260. 258.
    Winnick, J. and S. J. Cho, J. Chem. Phys. 55, 2092 (1971). Full details and results are given by Cho75.Google Scholar
  261. 259.
    van Witzenburg, W. and J. C. Stryland. Canad. J. Phys. 46, 811 (1968).Google Scholar
  262. 260.
    Yekhlakov, A. D. and K. P. Rodionov, Fiz. Metal, i Metalloved. 9, 982 (1960). English translation in Phys. Met. Metallog. 9, 932 (1960).Google Scholar
  263. 261.
    Yntema, J. L. and W. G. Schneider, J. Chem. Phys. 18, 641 (1950).Google Scholar
  264. 262.
    Zhokovsky, M. K. Izmeritel’-naya Tekhnika, 3 (1955).Google Scholar

Copyright information

© Springer Science+Business Media New York 1968

Authors and Affiliations

  • E. Whalley
    • 1
  1. 1.Division of ChemistryNational Research Council of CanadaOttawaCanada

Personalised recommendations