Advertisement

p-V-T Relationships in Gases at High Pressures and High Temperatures

  • P. Malbrunot

Abstract

A sufficient reason for measuring the equilibrium parameters p, V and T for gases at simultaneous high pressure and high temperature is simply to determine the phenomenological behavior of the gases under these unusual conditions. But in this range, as at lower pressure and temperature, the interest of pVT relationships is of primary importance on the fundamental level (for thermodynamics and for all physical or chemical properties that are related to the gas density) and on the theoretical level (equilibrium statistical mechanics).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

X. References

  1. 1.
    Atanov, Yu. A. and E. M. Yvanova. ‘Symposium on the accurate characterization of the high pressure environment’, NBS, Gaithersburg, Maryland (1968). Spec. Publ. Nat. Bur. Stand. No. 326 (1971).Google Scholar
  2. 2.
    Babb, S. E. J. Chem. Phys. 52, 5963 (1970).CrossRefGoogle Scholar
  3. 3.
    Babb, S. E. Mechanical Behaviour of Materials Under Pressure, Chap. 3. Edited by H. L. D. Pugh. Elsevier: London (1970).Google Scholar
  4. 4.
    Babb, S. E. J. Chem. Phys. 54, 4200 (1971).CrossRefGoogle Scholar
  5. 5.
    Babb, S. E. and S. L. Robertson. J. Chem. Phys. 53, 1097 (1970).CrossRefGoogle Scholar
  6. 6.
    Babb, S. E., G. J. Scott, C. D. Epp and S. L. Robertson. Rev. Sci. Instrum. 40, 670 (1969).CrossRefGoogle Scholar
  7. 7.
    Barker, J. A., P. J. Leonard and A. Pompe. J. Chem. Phys. 44, 4026 (1966).Google Scholar
  8. 8.
    Barrer, R. M. Diffusion in and through Solids. Cambridge University Press: London (1951).Google Scholar
  9. 9.
    Bartlett, E. P. J. Amer. Chem. Soc. 49, 687 (1927).CrossRefGoogle Scholar
  10. 10.
    Bartlett, E. P., H. L. Cupples and T. H. Tremearne. J. Amer. Chem. Soc. 50, 1275 (1928).CrossRefGoogle Scholar
  11. 11.
    Bartlett, E. P., H. C. Hetherington, H. M. Kvalnes and T. H. Tremearne. J. Amer. Chem. Soc. 52, 1374 (1930).CrossRefGoogle Scholar
  12. 12.
    Basset, J. and J. Basset. J. Phys. Radium, Phys. Appliquée, 15-A, 147 (1954).Google Scholar
  13. 13.
    Beattie, J. A., R. J. Barriault and J. S. Brierley. J. Chem. Phys. 19, 1222 (1951).CrossRefGoogle Scholar
  14. 14.
    Beattie, J. A., J. S. Brierley and R. J. Barriault. J. Chem. Phys. 20, 1613 (1952).CrossRefGoogle Scholar
  15. 15.
    Beattie, J. A. and C. K. Lawrence. J. Amer. Chem. Soc. 52, 6 (1930).CrossRefGoogle Scholar
  16. 16.
    Beattie, J. A., S. W. Levine and D. R. Douslin. J. Amer. Chem. Soc. 74, 4778 (1952).CrossRefGoogle Scholar
  17. 17.
    Beattie, J. A., S. Marple and D. G. Edwards. J. Chem. Phys. 18, 127 (1950).CrossRefGoogle Scholar
  18. 18.
    Beattie, J. A. and W. H. Stockmayer. J. Chem. Phys. 10, 473 (1942).CrossRefGoogle Scholar
  19. 19.
    Bell, P. M., R. J. Boyd and J. L. England. ‘Symposium on the accurate characterization of the high pressure environment’, NBS, Gaithersburg, Maryland (1968). Spec. Publ. Nat. Bur. Stand. No. 326, p 63 (1971).Google Scholar
  20. 20.
    Benedict, M. J. Amer. Chem. Soc. 59, 2224 and 2233 (1934).CrossRefGoogle Scholar
  21. 21.
    Bergeon, R. J. Rech. CNRS, 7, 371 (1956).Google Scholar
  22. 22.
    Birch, F. Handbook of Physical Constants, Section 7. Geological Society of America. Edited by S. P. Clarke. Memoir 97, New York (1966).Google Scholar
  23. 23.
    Boren, M. D., S. E. Babb and G. J. Scott. Rev. Sci. Instrum. 36, 1456 (1965).CrossRefGoogle Scholar
  24. 24.
    Bourassa, R. R., D. Lazarus and D. A. Blackburn. Phys. Rev. 165, 853 (1968).CrossRefGoogle Scholar
  25. 25.
    Bundy, F. P. J. Appl. Phys. 32, 483 (1961).CrossRefGoogle Scholar
  26. 26.
    Burnham, C. W., J. R. Holloway and N. F. Davis. Amer. J. Sci. 267 A, 70 (1969).Google Scholar
  27. 27.
    Cole, G. H. A. An Introduction to the Statistical Theory of Classical Simple Dense Fluids. Pergamon: Oxford (1967).Google Scholar
  28. 28.
    Connoly, J. F. Physics of Fluids, 7, 1023 (1964).CrossRefGoogle Scholar
  29. 29.
    Din, F. Thermodynamic Functions of Gases. Butterworths: London, Vols I and II (1956), Vol. III (1961).Google Scholar
  30. 30.
    Douslin, D. R., R. H. Harrison, R. T. Moore and J. M. McCullough. J. Chem. Engng Data, 9, 358 (1964).CrossRefGoogle Scholar
  31. 31.
    Dymond, J. H. and E. B. Smith. The Virial Coefficient of Gases. Clarendon Press: Oxford (1969).Google Scholar
  32. 32.
    Eyring, H. Statistical Mechanics Vol. II of Physical Chemistry: An Advanced Treatise, chapters 6 and 7. Academic Press: New York (1967).Google Scholar
  33. 33.
    Franck, E. U. and K. Todheide. Z. Phys. Chem., N.F. 22, 232 (1959).CrossRefGoogle Scholar
  34. 34.
    Frisch, H. L., J. L. Katz, E. Praesgaard and J. F. Lebowitz. J. Phys. Chem. 70, 2016 (1966).CrossRefGoogle Scholar
  35. 35.
    Getting, I. C. and G. C. Kennedy. J. Appl. Phys. 41, 4552 (1970).CrossRefGoogle Scholar
  36. 36.
    Greenwood, H. J. Amer. J. Sci. 267 A, 191 (1969).Google Scholar
  37. 37.
    Haar, L. and J. M. H. Levelt Sengers. J. Chem. Phys. 52, 5069 (1970).CrossRefGoogle Scholar
  38. 38.
    Haar, L. and H. S. Shenker. ‘Fifth symposium on thermophysical properties’, Boston (1970), Proceedings, p 223. edited by C. F. Bonilla. American Society of Mechanical Engineers (United Engng Center), New York (1970).Google Scholar
  39. 39.
    Haar, L. and S. H. Shenker. J. Chem. Phys. 55, 4951 (1971).CrossRefGoogle Scholar
  40. 40.
    Hanneman, R. E. and H. M. Strong. J. Appl. Phys. 37, 612 (1966).CrossRefGoogle Scholar
  41. 41.
    Henderson, D. and J. A. Barker. Phys. Rev. A., 1, 1266 (1970).CrossRefGoogle Scholar
  42. 42.
    Hilsenrath, J. et al. ‘Tables of thermal properties of gases’. Circ. US Nat. Bur. Stand. No. 564 (1955).Google Scholar
  43. 43.
    Hirschfelder, J. O., C. F. Curtiss and R. B. Bird. Molecular Theory of Gases and Liquids. Wiley: New York (1954).Google Scholar
  44. 44.
    Holborn, L. and J. Otto. Z. Phys. 33, 1 (1925).CrossRefGoogle Scholar
  45. 45.
    Holborn, L. and J. Otto. Z. Phys. 38, 359 (1926).CrossRefGoogle Scholar
  46. 46.
    Holser W. T. and J. C. Kennedy. Amer. J. Sci. 257, 71 (1959).CrossRefGoogle Scholar
  47. 47.
    Huff, J. A. and T. M. Reed. J. Chem. Engng Data, 8, 306 (1963).CrossRefGoogle Scholar
  48. 48.
    International Thermodynamic Tables of the Fluid State (IUPAC). Edited by S. Angus and R. Armstrong. Butterworths: London (Argon: 1972).Google Scholar
  49. 49.
    Johannin, P. Thesis, Paris (1958).Google Scholar
  50. 50.
    Juza, J., V. Kmonicek and O. Sifher. Physica, 31, 1735 (1965).CrossRefGoogle Scholar
  51. 51.
    Kazarnovskii, Ya. S. Acta Phys.-chim. URSS, 12, 513 (1940).Google Scholar
  52. 52.
    Kell, G. S., G. E. MacLaurin and E. Whalley. J. Chem. Phys. 48, 3805 (1968).CrossRefGoogle Scholar
  53. 53.
    Kennedy, G. C. Amer. J. Sci. 252, 225 (1954).CrossRefGoogle Scholar
  54. 54.
    Kennedy, G. C. and W. T. Holser. Handbook of Physical Constants, Geological Society of America, edited by S. P. Clarke, Memoir 97, p 371 (1966).Google Scholar
  55. 55.
    Kestin, J. ‘Seventh international conference on the properties of steam’, Tokyo (1968), Proceedings. American Society of Mechanical Engineers (United Engng Center), New York (1970).Google Scholar
  56. 56.
    Lallemand, M., J. Brielles, D. Vidal and P. Malbrunot. J. Phys. D: Appl. Phys. 6, 1052 (1973).CrossRefGoogle Scholar
  57. 57.
    Lazarus, D., R. N. Jeffery and J. D. Weiss. Appl. Phys. Letters, 19, 371 (1971).CrossRefGoogle Scholar
  58. 58.
    Lecocq, A. Thesis, Paris (1959).Google Scholar
  59. 59.
    Le Neindre, B., R. Tufeu, P. Bury, P. Johannin and B. Vodar. Proceedings of the Eighth International Conference on Thermal Conductivity, Purdue (1968), edited by C. Y. Ho and R. E. Taylor. Plenum: New York (1969).Google Scholar
  60. 60.
    Le Neindre, B., R. Tufeu, P. Bury, P. Johannin and B. Vodar. Proceedings of the Ninth International Conference on Thermal Conductivity, Iowa State University (1969), edited by H. R. Schanks. US Atomic Energy Commission, Division of Technical Information (1970).Google Scholar
  61. 61.
    Levelt Sengers, J. M. H., M. Klein and J. S. Gallagher. To appear in American Institute of Physics Handbook. McGraw-Hill: New York.Google Scholar
  62. 62.
    Levesque, D. and L. Verlet. Phys. Rev. 182, 307 (1969).CrossRefGoogle Scholar
  63. 63.
    Leycuras, A. and Y. Leycuras. ‘Chauffage sous hautes pressions’ from Les Hautes Températures edited by G. Chaudron, p 445. Masson: Paris (1973).Google Scholar
  64. 64.
    Luft, L. Industr. Engng. Chem. 49, 2035 (1957).CrossRefGoogle Scholar
  65. 65.
    Lydersen, A. L., R. A. Greenhorn and O. A. Hougen. ‘Generalized thermodynamic properties of pure fluids’. Coll. Eng., Univ. Wisconsin, Engng Exp. Sta. Rep. No. 4: Madison (1955)Google Scholar
  66. 66.
    Maier, S. and E. U. Franck. Ber. Bunsenges. Phys. Chem. 70, 639 (1966).Google Scholar
  67. 67.
    Malbrunot, P. Thesis, Paris (1970).Google Scholar
  68. 68.
    Malbrunot, P., P. Meunier and D. Vidal. High Temp. High Press. 1, 93 (1969).Google Scholar
  69. 69.
    Malbrunot, P. and B. Vodar. CR Acad. Sci., Paris, 268, 1337 (1969).Google Scholar
  70. 70.
    Malbrunot, P. and B. Vodar. High Temp. High Press. 3, 225 (1971).Google Scholar
  71. 71.
    McCormack, K. E. and W. G. Schneider. J. Chem. Phys. 18, 1269 (1950) and 19, 849 (1951).CrossRefGoogle Scholar
  72. 72.
    Monchick, L. and E. A. Mason. J. Chem. Phys. 35, 1676 (1961).CrossRefGoogle Scholar
  73. 73.
    Nejmark, B. E. Mechanical Properties of Steel and Alloys used in Energetics. Energia: Moscow (1967).Google Scholar
  74. 74.
    Nelson, L. C. and E. F. Obert. Trans. Amer. Soc. Mech. Engrs, 76, 1057 (1954).Google Scholar
  75. 75.
    Nicholson, G. A. and W. G. Schneider. Canad. J. Chem. 35, 589 (1955).CrossRefGoogle Scholar
  76. 76.
    Polyakov, E. V. and D. S. Tsiklis. Zh.Fiz. Khim. 41, 2370 (1967).Google Scholar
  77. 77.
    Presnall, D. C. J. Geophys. Res. 74, 6026 (1969).CrossRefGoogle Scholar
  78. 78.
    Reid, R. C. and T. K. Sherwood. The Properties of Gases and Liquids, 2nd ed. McGraw-Hill: New York (1966).Google Scholar
  79. 79.
    Robertson, S. L. Thesis, University of Oklahoma (1969).Google Scholar
  80. 80.
    Robertson, S. L. and S. E. Babb. J. Chem. Phys. 50, 4560 (1969).CrossRefGoogle Scholar
  81. 81.
    Robertson, S. L. and S. E. Babb. J. Chem. Phys. 51, 1357 (1969).CrossRefGoogle Scholar
  82. 82.
    Robertson, S. L. and S. E. Babb. J. Chem. Phys. 53, 1094 (1970).CrossRefGoogle Scholar
  83. 83.
    Robertson, S. L., S. E. Babb and G. J. Scott. J. Chem. Phys. 50, 2160 (1969).CrossRefGoogle Scholar
  84. 84.
    Rowlinson, J. S. Molec. Phys. 7, 349 (1964).CrossRefGoogle Scholar
  85. 85.
    Rowlinson, J. S. Rep. Progr. Phys. 28, 169 (1965).CrossRefGoogle Scholar
  86. 86.
    Rowlinson, J. S. Liquids and Liquid Mixtures, 2nd ed. Butterworths: London (1969).Google Scholar
  87. 87.
    Saurel, J. J. Phys. Radium, 14, 215 (1953).CrossRefGoogle Scholar
  88. 88.
    Saurel, J. Memorial de l’Artillerie Française, 1er fase, p 129 (1957).Google Scholar
  89. 89.
    Saurel, J. Thesis, Paris (1958).Google Scholar
  90. 90.
    Sherwood, A. E. and J. M. Prausnitz. J. Chem. Phys. 41, 429 (1964).CrossRefGoogle Scholar
  91. 91.
    Smith, L. B., J. A. Beattie and W. C. Kay. J. Amer. Chem. Soc. 59, 1587 (1937).CrossRefGoogle Scholar
  92. 92.
    Stepanov, V. A. and L. F. Vereshchagin. Pribory i Tekh. Eks. 2, 194 (1961).Google Scholar
  93. 93.
    Stone, J. P., C. T. Ewing, J. R. Spann, E. W. Steinkuller, D. D. Williams and R. R. Miller. J. Chem. Engng Data, 11, 309 (1966).CrossRefGoogle Scholar
  94. 94.
    Tufeu, R., B. Le Neindre and P. Bury. Physica, 44, 81 (1969).CrossRefGoogle Scholar
  95. 95.
    Tsiklis, D. S. and E. V. Polyakov. Dokl. Akad. Nauk SSSR, 176, 308 (1967).Google Scholar
  96. 96.
    Vassermann, A. A., Y. A. Kazavchinskii and V. A. Rabinovich. Thermophysical Properties of Air and its Components. Nauka: Moscow (1966), (in Russian).Google Scholar
  97. 97.
    Vilevich, A. V., L. F. Vereshchagin and Ya. A. Kalashnikov. Pribory i Tekh. Eks. 3, 146 (1961). Translated in Instrums Exp. Tech. Pittsburgh, 1, 559 (1961).Google Scholar
  98. 98.
    Vodar, B. and J. Saurel. High Pressure Physics and Chemistry, edited by R. S. Bradley, Vol. I, Chap. 3. Academic Press: London (1963).Google Scholar
  99. 99.
    Vukalovich, M. P. and Ya. F. Masalov. Teploenergetika, 13, 58 (1966), translated in Heat Pwr Engng (Toronto) W, 13, 73 (1966).Google Scholar
  100. 100.
    Vukalovich, M. P., M. S. Trakhtengerts and G. A. Spiridonov. Teploenergetika, 14, 65 (1970).Google Scholar
  101. 101.
    Vukalovich, M. P., V. N. Zubarev, A. A. Alexandrov and A. D. Kozlov. Teploenergetika, 1, 70 (1970).Google Scholar
  102. 102.
    Wentorf, R. H. ‘Symposium on the accurate characterization of the high pressure environment’ NBS, Gaithersburg, Maryland (1968). Spec. Publ. Nat. Bur. Stand. No. 326, p 81 (1971).Google Scholar
  103. 103.
    Whalley, E., Y. Lupien and W. G. Schneider. Canad. J. Chem. 31, 722 (1953).CrossRefGoogle Scholar
  104. 104.
    Whalley, E., Y. Lupien and W. G. Schneider. Canad. J. Chem. 33, 633 (1955).CrossRefGoogle Scholar
  105. 105.
    Whalley, E. and W. G. Schneider. Trans. Amer. Soc. Mech. Engrs, 76, 1001 (1954).Google Scholar
  106. 106.
    Wiebe, R. and V. L. Gaddy. J. Amer. Chem. Soc. 60, 2300 (1938).CrossRefGoogle Scholar
  107. 107.
    Wiebe, R., V. L. Gaddy and C. Heins. J. Amer. Chem. Soc. 53, 1721 (1931).CrossRefGoogle Scholar
  108. 108.
    Williams, D. W. Amer. Mineral. 53, 1765 (1968).Google Scholar
  109. 109.
    Witonsky, R. J. and J. G. Miller J. Amer. Chem. Soc. 85, 282 (1963).CrossRefGoogle Scholar
  110. 110.
    Yntema, J. L. and W. G. Schneider. J. Chem. Phys. 18, 641 and 646 (1950).CrossRefGoogle Scholar
  111. 111.
    Zwanzig, R. W. J. Chem. Phys. 22, 1420 (1954).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1968

Authors and Affiliations

  • P. Malbrunot
    • 1
  1. 1.Laboratoire de Physique AppliquéeUniversité des Sciences et Techniques du LanguedocMonptellierFrance

Personalised recommendations