Advertisement

Part 7. Very Low Pressures and Ultra Low Pressures (below 10−6 Torr)

  • P. A. Redhead
Chapter

Abstract

Pressures below 10−6 Torr are measured almost exclusively with ionization gages. These gages have the advantages of high sensitivity, potentiality for measuring pressures as low as 10−18 Torr, and relative simplicity of the gage and its electronic controls. The attendant disadvantages are rather poor absolute accuracy, serious interactions between the gage and the system being measured, and the need for considerable skill and knowledge on the part of the operator to obtain reproducible, accurate results. Other types of gage have been developed which do not require ionization of the gas and which are potentially capable of measuring pressures in the ultrahigh vacuum (u.h.v.) range (< 10−9 Torr) which may not suffer from the disadvantages of ionization gages. None of these gages has been developed to the point where it is a serious competitor to the ionization gage at pressures below 10−6 Torr, nor have the operational problems of these gages been clearly established. This chapter will concentrate its attention on ionization gages with only very brief reference to other types.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

VI. References

  1. 1.
    Akaishi, K. Jap. J. Appl. Phys. 8, 1061 (1969).CrossRefGoogle Scholar
  2. 2.
    Alpert, D. Vide, Paris, 17, 19 (1962).Google Scholar
  3. 3.
    Alpert, D. and R. S. Buritz, J. Appl. Phys. 25, 202 (1954).CrossRefGoogle Scholar
  4. 4.
    Anderson, H. U. Rev. Sci. Instrum. 34, 703 (1963).CrossRefGoogle Scholar
  5. 5.
    Apgar, E. Proceedings of the Second European Vacuum Symposium, p 223. R. A. Lang: Esch (Taunus) (1963).Google Scholar
  6. 6.
    Appelt, G. Vakuum-Technik, 11, 174 (1962).Google Scholar
  7. 7.
    Barnes, G. J. Gaines and J. Kees, Vacuum, 12, 141 (1962).CrossRefGoogle Scholar
  8. 8.
    Baronetsky, E. and A. Klopfer, Advanc. Vac. Sci. Technol. 1, 401 (1960).Google Scholar
  9. 9.
    Barz, A. and P. Kocian, J. Vac. Sci. Technol. 7, 200 (1970).CrossRefGoogle Scholar
  10. 10.
    Bayard, R. T. and D. Alpert, Rev. Sci. Instrum. 21, 571 (1950).CrossRefGoogle Scholar
  11. 11.
    Beck, A. H. and A. D. Brisbane, Vacuum, 2, 137 (1952)CrossRefGoogle Scholar
  12. 12.
    Becker, J. A., E. J. Becker and R. G. Brandes, J. Appl. Phys. 32, 411 (1961).CrossRefGoogle Scholar
  13. 13.
    Bennewitz, H. G. and H. D. Dohmann, Vakuum-Technik, 14, 8 (1965).Google Scholar
  14. 14.
    Beitel, G. A. and C. M. Gosselin, J. Vac. Sci. Technol. 7, 580 (1970).CrossRefGoogle Scholar
  15. 15.
    Blears, J. Proc. Roy. Soc. A, 188, 62 (1947).CrossRefGoogle Scholar
  16. 16.
    Brombacher, W. G. ‘Bibliography and Index on Vacuum and Low Pressure Measurement’, NBS Monograph 35 (US Department of Commerce).Google Scholar
  17. t7.
    Brombacher, W. G. NBS Tech. Note 298 (1967).Google Scholar
  18. 18.
    Bureau, A. J., L. S. Laslett and J. M. Keller, Rev. Sci. Instrum. 23, 683 (1952).CrossRefGoogle Scholar
  19. 19.
    Carmichael, J. H. and E. A. Trendelenburg, J. Appl. Phys. 29, 1570 (1958).CrossRefGoogle Scholar
  20. 20.
    Carter, G. Nature, London, 183, 1619 (1959).CrossRefGoogle Scholar
  21. 21.
    Christian, R. G. and J. H. Leck, J. Sci. Instrum. 43, 229 (1966).CrossRefGoogle Scholar
  22. 22.
    Clay, F. P. and L. T. Melfi, J. Vac. Sci. Technol. 3, 167 (1966).CrossRefGoogle Scholar
  23. 23.
    Cleaver, J. S. and W. H. Zakrzewski, Vacuum, 18, 73 (1968).CrossRefGoogle Scholar
  24. 24.
    Cobic, B., G. Carter and J. H. Leek, Brit. J. Appl. Phys. 12, 288 (1961).CrossRefGoogle Scholar
  25. 25.
    Cobic, B., G. Carter and J. H. Leek, Vacuum, 11, 247 (1961).CrossRefGoogle Scholar
  26. 26.
    Dadson, R. S., K. W. T. Elliott and D. M. Woodman, Proceedings of the Fourth International Vacuum Congress, p 679. Institute of Physics and the Physical Society: London (1968).Google Scholar
  27. 27.
    Davis, W. D. J. Vac. Sci. Technol. 5, 23 (1968).CrossRefGoogle Scholar
  28. 28.
    Davis, W. D. J. Vac. Sci. Technol, 6, 85 (1969).CrossRefGoogle Scholar
  29. 29.
    de Vries, A. E. and P. K. Rol, Vacuum, 15, 135 (1965).CrossRefGoogle Scholar
  30. 30.
    Edmonds, T. and J. P. Hobson, J. Vac. Sci. Technol. 2, 182 (1965).CrossRefGoogle Scholar
  31. 31.
    Ehrlich, G. Advance. Catalysis, 14, 255 (1963).Google Scholar
  32. 32.
    Eisinger, J. J. Chem. Phys. 30, 412 (1959).CrossRefGoogle Scholar
  33. 33.
    Fitch, R. K. and W. J. Thatcher, J. Phys. E., Ser. 2, 1, 317 (1968).CrossRefGoogle Scholar
  34. 34.
    Fletcher, B. and J. F. Watts, Vacuum, 17, 445 (1967).CrossRefGoogle Scholar
  35. 35.
    Garbe, S., K. Klopfer and W. Schmidt, Vacuum, 10, 81 (1960).CrossRefGoogle Scholar
  36. 36.
    Gomer, R. Rev. Sci. Instrum. 24, 993 (1953).CrossRefGoogle Scholar
  37. 37.
    Gopalaraman, C. P., R. A. Armstrong and P. A. Redhead, J. Vac. Sci. Technol. 7, 195 (1970).CrossRefGoogle Scholar
  38. 38.
    Gosselin, C. M., G. A. Beitel and A. Smith, J. Vac. Sci. Technol. 7, 233 (1970).CrossRefGoogle Scholar
  39. 39.
    Grigor’ev, A. M. Instrums Exp. Tech. 870 (1959).Google Scholar
  40. 40.
    Groszkowski, J. Bull. Acad. Polon. Sci; Ser. Sci. Techn. 14, 1023 (1966).Google Scholar
  41. 41.
    Groszkowski, J. Bull. Acad. Polon. Sci; Ser. Sci. Techn. 18, 931 (1970).Google Scholar
  42. 42.
    Haefer, R. Acta Phys. Austriaca, 9, 200 (1954).Google Scholar
  43. 43.
    Haefer, R. and J. Hengevoss, Trans. Amer. Vac. Soc. Nat. Vac. Symp. 7, 67 (1960).Google Scholar
  44. 44.
    Hayward, W. H., R. L. Jepsen and P. A. Redhead, Trans. Amer. Vac. Soc. Nat. Vac. Symp. 10, 228 (1963).Google Scholar
  45. 45.
    Helmer, J. C. and W. H. Hayward, Rev. Sci. Instrum. 37, 1652 (1966).CrossRefGoogle Scholar
  46. 46.
    Hickmott, T. W. J. Appl. Phys. 31, 128 (1960).CrossRefGoogle Scholar
  47. 47.
    Hickmott, T. W. J. Chem. Phys. 32, 810 (1960).CrossRefGoogle Scholar
  48. 48.
    Hobson, J. P. and J. Earnshaw, Proceedings of the Fourth International Vacuum Congress, p 619. Institute of Physics and the Physical Society: London (1968).Google Scholar
  49. 49.
    Hobson, J. P. and P. A. Redhead, Canad. J. Phys. 36, 271 (1958).CrossRefGoogle Scholar
  50. 50.
    Hobson, J. P. and J. Earnshaw, J. Vac. Sci. Technol. 4, 257 (1967).CrossRefGoogle Scholar
  51. 51.
    Hobson, J. P. J. Vac. Sci. Technol. 1, 1 (1964).CrossRefGoogle Scholar
  52. 52.
    Holkeboer, D. H. Trans. Amer. Vac. Soc. Nat. Vac. Symp. 10, 292 (1963).Google Scholar
  53. 53.
    Huber, W. K. and G. Rettinghaus, J. Vac. Sci. Technol. 6, 89 (1969).CrossRefGoogle Scholar
  54. 54.
    Iapteff, B. and P. S. Choumoff, Vide, Paris, 146, 103 (1970).Google Scholar
  55. 55.
    Ishii, H. and K. Nakayama, Trans. Amer. Vac. Soc. Nat. Vac. Symp. 8, 406(1961).Google Scholar
  56. 56.
    Ishikawa, K. Jap. J. Appl. Phys. 4, 461 (1965).CrossRefGoogle Scholar
  57. 57.
    Jaeckel, R. and E. Teloy, Trans. Amer. Vac. Soc. Nat. Vac. Symp. 8, 406 (1961).Google Scholar
  58. 58.
    James, L. H. and G. Carter, Trans. Amer. Vac. Soc. Nat. Vac. Symp. 9, 502 (1962).Google Scholar
  59. 59.
    Kornelsen, E. V. Trans, of the Third International Vacuum Congress, Vol. I, p 65. Pergamon: London (1965).Google Scholar
  60. 60.
    Lafferty, J. M. Rev. Sci. Instrum. 34, 467 (1963).CrossRefGoogle Scholar
  61. 61.
    Lafferty, J. M. Trans. Amer. Vac. Soc. Nat. Vac. Symp. 7, 97 (1960).Google Scholar
  62. 62.
    Lafferty, J. M. J. Appl. Phys. 32, 424 (1961).CrossRefGoogle Scholar
  63. 63.
    Lafferty, J. M. Proceedings of the Fourth International Vacuum Congress, p 647. Institute of Physics and the Physical Society: London (1968).Google Scholar
  64. 64.
    Lange, W. J. and D. P. Eriksen, J. Vac. Sci. Technol. 3, 303 (1966).Google Scholar
  65. 65.
    Lange, W. J. and J. H. Singleton, J. Vac. Sci. Technol. 3, 319 (1966).CrossRefGoogle Scholar
  66. 66.
    Lange, W. J., J. H. Singleton and D. P. Eriksen, J. Vac. Sci. Technol. 3, 338 (1966).CrossRefGoogle Scholar
  67. 67.
    Lassiter, W. S. J. Vac. Sci. Technol. 6, 418 (1969).CrossRefGoogle Scholar
  68. 68.
    Lawson, R. W. Brit. J. Appl. Phys. 18, 1783 (1967).CrossRefGoogle Scholar
  69. 69.
    Leek, J. H. Pressure Measurement in Vacuum Systems, 2nd ed. Chapman and Hall: London (1964).Google Scholar
  70. 70.
    Madey, T. E. and J. T. Yates, J. Vac. Sci. Technol. 8, 525 (1971).CrossRefGoogle Scholar
  71. 71.
    Meinke, C. and G. Reich, Vakuum-Technik, 12, 79 (1963).Google Scholar
  72. 72.
    Meinke, C. and G. Reich, J. Vac. Sci. Technol. 4, 356 (1967).CrossRefGoogle Scholar
  73. 73.
    Melfi, L. T. J. Vac. Sci. Technol. 6, 322 (1969).CrossRefGoogle Scholar
  74. 74.
    Meyer, E. A. and R. G. Herb, J. Vac. Sci. Technol. 4, 63 (1967).CrossRefGoogle Scholar
  75. 75.
    Miller, J. R. Vacuum, 17, 387 (1967).CrossRefGoogle Scholar
  76. 76.
    Moesta, H. and R. Renn, Vakuum-Technik, 6, 35 (1957).Google Scholar
  77. 77.
    Moore, G. E. and F. C. Unterwald, J. Chem. Phys. 40, 2626 (1964).CrossRefGoogle Scholar
  78. 78.
    Moore, G. E. and F. C. Unterwald, J. Chem. Phys. 40, 2639 (1964).CrossRefGoogle Scholar
  79. 79.
    Moser, H. and H. Poltz, Z. Instrumkde, 65, 43 (1957).Google Scholar
  80. 80.
    McGowan, W. and L. Kerwin, Canad. J. Phys. 38, 567 (1960).CrossRefGoogle Scholar
  81. 81.
    Nakeo, I. F. J. Jap. Vac. Soc. 9, 49 (1966).CrossRefGoogle Scholar
  82. 82.
    Nichiporovich, G. A. Instrums Exp. Tech. No. 6, 1440 (1967).Google Scholar
  83. 83.
    Nichiprovich, G. A. and I. F. Khanina, Proceedings of the Fourth International Vacuum Congress, p 666. Institute of Physics and the Physical Society: London (1968).Google Scholar
  84. 84.
    Nichiporovich, G. and I. F. Khanina, Instrums Exp. Tech. No. 1, 159 (1968).Google Scholar
  85. 85.
    Nottingham, W. B. Proceedings of the Seventh Conference on Physics and Electronics. Massachusetts Institute of Technology: Cambridge, Mass. (1947).Google Scholar
  86. 86.
    Owens, C. L. J. Vac. Sci. Technol. 2, 104 (1965).CrossRefGoogle Scholar
  87. 87.
    Penning, F. M. and K. Nienhuis, Philips Tech. Rev. 11, 115 (1949).Google Scholar
  88. 88.
    Poulter, K. F. Vacuum, 20, 385 (1970).CrossRefGoogle Scholar
  89. 89.
    Rapp, D. and P. Englander-Golden, J. Chem. Phys. 43, 1464 (1965).CrossRefGoogle Scholar
  90. 90.
    Redhead, P. A. Canad. J. Phys. 36, 255 (1958).CrossRefGoogle Scholar
  91. 91.
    Redhead, P. A. Canad. J. Phys. 37, 1360 (1959).CrossRefGoogle Scholar
  92. 92.
    Redhead, P. A.Trans. Amer. Vac. Soc. Nat. Vac. Symp. 7, 108 (1960).Google Scholar
  93. 93.
    Redhead, P. A. Rev. Sci. Instrum. 31, 343 (1960).CrossRefGoogle Scholar
  94. 94.
    Redhead, P. A. Vacuum, 13, 253 (1963).CrossRefGoogle Scholar
  95. 95.
    Redhead, P. A. J. Vac. Sci. Technol. 3, 173 (1966).CrossRefGoogle Scholar
  96. 96.
    Redhead, P. A. J. Vac. Sci. Technol. 4, 57 (1967).CrossRefGoogle Scholar
  97. 97.
    Redhead, P. A. J. Vac. Sci. Technol. 7, 182 (1970).CrossRefGoogle Scholar
  98. 98.
    Redhead, P. A. and J. P. Hobson, Brit. J. Appl. Phys. 16, 1555 (1965).CrossRefGoogle Scholar
  99. 99.
    Redhead, P. A., J. P. Hobson and E. V. Kornelsen, The Physical Basis of Ultrahigh Vacuum. Chapman and Hall: London (1968).Google Scholar
  100. 100.
    Reich, G. Z. InstrumKde, 74, 254 (1966).Google Scholar
  101. 101.
    Reich, G. Trans. Amer. Vac. Soc. Nat. Vac. Symp. 7, 112 (1960).Google Scholar
  102. 102.
    Roehrig, J. R. and J. C. Simonds, Trans. Amer. Vac. Soc. Nat. Vac. Symp. 8, 511 (1961).Google Scholar
  103. 103.
    Rothe, E. W. J. Vac. Sci. Technol. 1, 66 (1964).CrossRefGoogle Scholar
  104. 104.
    Schissel, P. O. J. Appl. Phys. 33, 2659 (1962).CrossRefGoogle Scholar
  105. 105.
    Schuemann, W. C. Rev. Sci. Instrum. 34, 700 (1963).CrossRefGoogle Scholar
  106. 106.
    Schuhmann, S. Trans. Amer. Vac. Soc. Nat. Vac. Symp. 9, 463 (1962).Google Scholar
  107. 107.
    Schulz, G. J. J. Appl. Phys. 28, 1149 (1957).CrossRefGoogle Scholar
  108. 108.
    Shaw, M. L. Rev. Sci. Instrum. 37, 113 (1966).CrossRefGoogle Scholar
  109. 109.
    Singleton, J. H. J. Chem. Phys. 45, 2819 (1966).CrossRefGoogle Scholar
  110. 110.
    Singleton, J. H. J. Vac. Sci. Technol. 4, 103 (1967).CrossRefGoogle Scholar
  111. 111.
    Smetana, F. O. and C. T. Carley, J. Vac. Sci. Technol. 3, 47 (1966).Google Scholar
  112. 112.
    Spencer, C. M. and D. Staheli, J. Vac. Sci. Technol. 5, 105 (1968).CrossRefGoogle Scholar
  113. 113.
    Steckelmacher, W. J. Sci. Instrum. 42, 63 (1965).CrossRefGoogle Scholar
  114. 114.
    Steckelmacher, W. Vuoto Sci. & Tecnol. 2, 189 (1969).Google Scholar
  115. 115.
    Stickney, W. W. and B. B. Dayton, Trans. Amer. Vac. Soc. Nat. Vac. Symp. 10, 105 (1963).Google Scholar
  116. 116.
    Tuzi, Y., S. Okada and M. Kim, Jap. J. Appl. Phys. 7, 1415 (1968).CrossRefGoogle Scholar
  117. 117.
    Urbanek, K. J. Vac. Sci. Technol. 4, 328 (1967).Google Scholar
  118. 118.
    Utterback, N. G. and T. Griffiths, Rev. Sci. Instrum. 37, 866 (1966).CrossRefGoogle Scholar
  119. 119.
    Van Oostrom, A. J. Sci. Instrum. 44, 927 (1967).CrossRefGoogle Scholar
  120. 120.
    Werner, J. G. and J. H. Leck, J. Phys. E. 2, 861 (1969).CrossRefGoogle Scholar
  121. 121.
    Winters, H. F., D. R. Denison, D. G. Bills and E. E. Donaldson, J. Appl. Phys. 34, 1810 (1963).CrossRefGoogle Scholar
  122. 122.
    Young, J. R. and F. P. Hession, Trans. Amer. Vac. Soc. Nat. Vac. Symp. 10, 234 (1963).Google Scholar

Copyright information

© Springer Science+Business Media New York 1968

Authors and Affiliations

  • P. A. Redhead
    • 1
  1. 1.National Research CouncilOttawaCanada

Personalised recommendations