Advertisement

Kinetics of Electrode Reactions

  • Viktor A. Myamlin
  • Yurii V. Pleskov
Chapter

Abstract

One of the main peculiarities of a semiconductor electrode is the fact that the rate of an electrochemical reaction depends substantially on the electron structure of the semiconductor. In particular, this appears in the fact that electrons of the conductivity band and valence electrons may participate in the electrochemical reaction. Let us examine the electrode oxidation—reduction reaction
$${A^ + } + {e^ - } \rightleftarrows A$$
(24.1)
for the case where conductivity electrons participate in it. Let us denote the currents of the oxidation and reduction reactions by in c and in a, respectively. In analogy with metal electrodes (see, for example [1]) it is possible to write that the current in c is proportional to the number of the electrons at the contact ns and to the number of ions in the electrolyte cA+ and also to the probability of the transfer of an electron from the conductivity band to an ion [2–4]:
$$i_n^C = {k_1}{c_A} + {n_s}{e^{\frac{{\alpha F{\varphi _0}}}{{RT}}}}$$
(24.2)
where k1 is the reaction rate constant, α is the transfer coefficient, φ 0 is the potential drop in the Helmholtz layer,* and F is a Faraday.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. N. Frumkin, V. S. Bagotskii, Z. A. Ioffa, and B. N. Kabanov, Kinetics of Electrode Processes, Izd. Mosk. Gos. Univ. (1952).Google Scholar
  2. 2.
    Yu. A. Vdovin, V. G. Levich, and V. A. Myamlin, Collection: Some Problems in Theoretical Physics, Atomizdat, Moscow (1958), p. 3.Google Scholar
  3. 3.
    Yu. A. Vdovin, V. G. Levich, and V. A. Myamlin, Dokl. Akad. Nauk SSSR, 124: 350 (1949).Google Scholar
  4. 4.
    M. Green, Solid-State Physics in Electronics and Telecommunications, London (1959), p. 619.Google Scholar
  5. 5.
    J. F. Dewald, Ann. N. Y. Acad. Sci., 101:872 (1963).Google Scholar
  6. 6.
    M. Green, New Problems in Modern Electrochemistry, Vol. 2 [Russian translation], IL, Moscow (1962), p. 377.Google Scholar
  7. 7.
    R. M. Lazorenko-Manevich and S. O. Izidinov, Dokl. Akad. Nauk SSSR, 140:172 (1961).Google Scholar
  8. 8.
    R. A. Marcus, Trans. Symposium on Electrode Processes (ed. E. Yeager), Wiley, New York (1961), p. 239.Google Scholar
  9. 9.
    J. Dewald, Semiconductors (ed. N. Hannay), Reinhold, New York (1959).Google Scholar
  10. 10.
    H. Gerischer, Z. Phys. Chem., Frankfort, 26:223, 325 (1960); 27:48 (1961).Google Scholar
  11. 11.
    H. Gerischer, Surface Chemistry of Metals and Semiconductors (ed. H. C. Gatos), New York, Wiley (1960), p. 177.Google Scholar
  12. 12.
    H. Gerischer, Advances in Electrochemistry and Electrochemical Engineering, Vol. 1 (ed. P. Delahay), Intersciences Publishers, New York-London (1961), p. 139Google Scholar
  13. 13.
    R. R. Dogonadze and Yu. A. Chizmadzhev, Dokl. Akad. Nauk SSSR, 144:1077 (1962); 145:849 (1962); 150:333 (1963).Google Scholar
  14. 14.
    R. R. Dogonadze, A. M. Kuznetsov, and Yu. A. Chizmadzhev, Zh. Fiz. Khim., 38:1195 (1964).Google Scholar
  15. 15.
    A. M. Kuznetsov and R. R. Dogonadze, Izv. Akad. Nauk SSSR, Ser. Khim., (1964), p. 2140.Google Scholar
  16. 16.
    W. Shockley, Theory of Electronic Semiconductors [Russian translation], IL, Moscow (1953).Google Scholar
  17. 17.
    Yu. A. Vdovin, B. M. Grafov, and V. A. Myamlin, Dokl. Akad. Nauk SSSR, 129: 827 (1959).Google Scholar
  18. 18.
    Yu. A. Vdovin, V. G. Levich, and V. A. Myamlin, Some Problems in Theoretical Physics, Atomizdat, Moscow (1958), p. 10.Google Scholar
  19. 19.
    Yu. A. Vdovin, V. G. Levich, and V. A. Myamlin, Dokl. Akad. Nauk SSSR, 126:1296 (1959).Google Scholar
  20. 20.
    V. A. Myamlin, Dokl. Akad. Nauk SSSR, 140:870 (1961).Google Scholar
  21. 21.
    E A. Efimov and I. G. Erusalimchik, Zh. Fiz. Khim., 32:413 (1958).Google Scholar
  22. 22.
    E. A. Efimov and I. G. Erusalimchik, Zh. Fiz. Khim., 32:1103 (1958).Google Scholar
  23. 23.
    V. A. Tyagai, Elektrokhimiya, 1:387 (1965).Google Scholar
  24. 24.
    A. M. Goodman, Surface Sci., 1:54 (1964).Google Scholar
  25. 25.
    J. F. Dewald, Surface Chemistry of Metals and Semiconductors (ed. H. C. Gatos), Wiley, New York, (1960), p. 205.Google Scholar
  26. 26.
    D. R. Turner, J. Electrochem. Soc., 103:252 (1956).Google Scholar
  27. 27.
    M. N. Platonova, Zh. Prikl. Khim., 35: 334 (1962);Google Scholar
  28. 27a.
    V. M. Kochegarov, E. A. Zyablova, and F. I. Zaburdaeva, Zh. Prikl. Khim., 37:1494 (1964).Google Scholar
  29. 28.
    F. Jirsa, Z. Anorg. Chem., 268:84 (1952).Google Scholar
  30. 29.
    M. Green and P. H. Robinson, J. Electrochem. Soc., 106:253 (1959).Google Scholar
  31. 30.
    Lj. Duic, Z. Kovac, and B. Lovrecek, Croat. Chem. Acta, 32:213 (1960).Google Scholar
  32. 31.
    F. Beck and H. Gerischer, Z. Electrochem., 63:500 (1959).Google Scholar
  33. 32.
    K. Bohnenkamp and H.-J. Engell, Z. Elektrochem., 61:1184 (1957).Google Scholar
  34. 33.
    R. M. Lazorenko-Manevich, Dokl. Akad. Nauk SSSR, 144: 1094 (1962).Google Scholar
  35. 34.
    A. A. Yakovleva, T. I. Borisova, and V. I. Veselovskii, Dokl. Akad. Nauk SSSR, 133:889 (1960).Google Scholar
  36. 35.
    A. A. Yakovleva, T. I. Borisova, and V. I. Veselovskii, Dokl. Akad. Nauk SSSR, 145:373 (1962).Google Scholar
  37. 36.
    T. P. Hore, New Problems in Modern Electrochemistry [Russian translation], Vol. 2, IL, Moscow (1962), p. 284.Google Scholar
  38. 37.
    H. Gerischer, Record Chem. Progr (Kresge-Hooker Sci. Libr.), 23:134 (1962);Google Scholar
  39. 37a.
    J. A. Harrison and H. Gerischer, Z. Elektrochem., 66:762 (1962);Google Scholar
  40. 37b.
    P. J. Boddy, J. Electrochem. Soc., 111:1136 (1964).Google Scholar
  41. 38.
    H. Gobrecht, O. Meinhardt, and W. Mindt., Ber. Bunsenges., 68:190 (1964).Google Scholar
  42. 39.
    V. R. Erdélyi and M. Green, Nature, 182:1592 (1958).Google Scholar
  43. 40.
    S. Sheff, H. C. Gatos, and S. Zwerdling, Rev. Scient. Instrum., 29:531 (1958).Google Scholar
  44. 41.
    I. V. Borovkov, Zh. Fiz. Khim., 34:2682 (1960).Google Scholar
  45. 42.
    A. G. Pecherskaya and V. V. Stender, Zh. Fiz. Khim., 24:856 (1950).Google Scholar
  46. 43.
    B. N. Zuev, Collection: Metallurgical and Chemical Industry of Kazakhstan, Central Institute for Scientific and Technical Information, Alma-Ata, 6 (10): 82 (1960).Google Scholar
  47. 44.
    R. M. Lazorenko-Manevich, Dissertation, L. Ya. Kar-pova Physieochemical Institute, Moscow (1963).Google Scholar
  48. 45.
    D. P. Zosimovich and N. E. Nechaeva, Proceedings of the Fourth Conference on Electrochemistry, Moscow (1959), p. 541.Google Scholar
  49. 46.
    J. Mieluch, Bull. Acad. Polon. Sci., 7:151 (1959).Google Scholar
  50. 47.
    H. Gerischer, Anal. Real. Soc. Espan. Fis. Quim., B-56:535 (1960).Google Scholar
  51. 48.
    E. A. Efimov and I. G. Erusalimchik, Zh. Fiz. Khim., 32:1967 (1958).Google Scholar
  52. 49.
    E. A. Efimov and I. G. Erusalimchik, Zh. Fiz. Khim., 35:384 (1961).Google Scholar
  53. 50.
    E. A. Efimov and I. G. Erusalimchik, Dokl. Akad. Nauk SSSR, 124:609 (1959).Google Scholar
  54. 51.
    E. A. Efimov, I. G. Erusalimchik, and G. P. Sokolova, Zh. Fiz. Khim., 36:1005 (1962).Google Scholar
  55. 52.
    M. Seipt and H. Fischer, Anal. Real. Soc. Espan. Fis. Quim., B-56:443 (1960).Google Scholar
  56. 53.
    Yu. V. Pleskov, Dokl. Akad. Nauk SSSR, 143:1399 (1962).Google Scholar
  57. 54.
    A. N. Frumkin, L. I. Bogulavskii, and V. S. Serebrennikov, Dokl. Akad. Nauk SSSR, 142:878 (1962).Google Scholar
  58. 55.
    W. H. Brattain and C. G. B. Garrett, Bell System Techn. J., 34:129 (1955).Google Scholar
  59. 56.
    W. H. Brattain and C. G. B. Garrett, Physica, 20:885 (1954).Google Scholar
  60. 57.
    W. H. Brattain and C. G. B. Garrett, Phys. Rev., 94:750 (1954).Google Scholar
  61. 58.
    S. G. Ellis, Phys. Rev., 100:1140 (1955).Google Scholar
  62. 59.
    A. Uhlir, Bell System Techn. J., 35:333 (1956).Google Scholar
  63. 60.
    J. B. Flynn, J. Electrochem. Soc., 105:715 (1958).Google Scholar
  64. 61.
    W. Shockley and W. T. Read, Phys. Rev., 87:835 (1952).Google Scholar
  65. 62.
    P. P. Konorov and M. N. Kolbin, Fiz. Tverd. Tela, 3: 1553 (1961).Google Scholar
  66. 63.
    V. A. Tyagai and Yu. V. Pleskov, Fiz. Tverd. Tela, 4: 343 (1962).Google Scholar
  67. 64.
    W. W. Harvey, Quart. Progr. Rept. Solid-State Res. Lincoln Lab. MIT, Cambridge, Mass., Jan., 1961, p. 11.Google Scholar
  68. 65.
    Yu. V. Pleskov, Dokl. Akad.-Nauk SSSR, 132:1360 (1960).Google Scholar
  69. 66.
    H. Gerischer and F. Beck, Z. Phys. Chem., Frankfort, 24:378 (1960).Google Scholar
  70. 67.
    E. A. Efimov and I. G. Erusalimchik, Zh. Fiz. Khim., 38: 589 (1964).Google Scholar
  71. 68.
    E. A. Efimov and I. G. Erusalimchik, Dokl. Akad. Nauk SSSR, 128:124 (1959).Google Scholar
  72. 69.
    E. A. Efimov and I. G. Erusalimchik, Zh. Fiz. Khim., 35:543 (1961).Google Scholar
  73. 70.
    E. A. Efimov and I. G. Erusalimchik, Zh. Fiz. Khim., 36:1791 (1962).Google Scholar
  74. 71.
    T. Gabor, J. Appl. Phys., 32:1361 (1961);Google Scholar
  75. 71a.
    A. Wolkenberg, Roczinki Chem., 39: 291 (1965).Google Scholar
  76. 72.
    G. Dejardin, G. Mesnard, and A. Dolce, Compt. Rend., 246:1016 (1958).Google Scholar
  77. 73.
    F. Beck and H. Gerischer, Z. Elektrochem., 63:943 (1959).Google Scholar
  78. 74.
    R. J. Flannery, J. E. Thomas, and D. Trivich, J. Elec-trochem. Soc., 110:1054 (1963).Google Scholar
  79. 75.
    Z. Trouzil, Czech. J. Fiz., 4:238 (1954).Google Scholar
  80. 76.
    Yu. V. Pleskov, Dokl. Akad. Nauk SSSR, 130:362 (1960).Google Scholar
  81. 77.
    E. A. Efimov and I. G. Erusalimchik, Dokl. Akad. Nauk SSSR, 122:632 (1958).Google Scholar
  82. 78.
    F. Berz and D. C. Emmony, Phys. Letters, 2:197 (1962).Google Scholar
  83. 79.
    Yu. V. Pleskov, Dokl. Akad. Nauk SSSR, 126:111 (1959).Google Scholar
  84. 80.
    W. W. Harvey, J. Phys. Chem. Solids, 14:82 (1960).Google Scholar
  85. 81.
    O. V. Romanov and P. P. Konorov, Fiz. Tverd. Tela, 4: 2276 (1962).Google Scholar
  86. 82.
    H. Gobrecht, O. Meinhardt, and L. Schulz, Ber. Bunsenges., 67:156 (1963).Google Scholar
  87. 83.
    E. A. Efimov, I. G. Erusalimchik, and E. I. Gorgoraki, Zh. Fiz. Khim., 38:720 (1964).Google Scholar
  88. 84.
    E. A. Efimov and I. G. Erusalimchik, Zh. Fiz. Khim., 34: 2804 (1960).Google Scholar
  89. 85.
    R. M. Lazorenko-Manevich, N. A. Aladzhalova, and V. I. Veselovskii, Dokl. Akad. Nauk SSSR, 133:620 (1960).Google Scholar
  90. 86.
    E. N. Paleolog, A. Z. Fedotova, and N. D. Tomashov, Dokl. Akad. Nauk SSSR, 137: 900 (1961).Google Scholar
  91. 87.
    N. D. Tomashov, E. N. Paleolog, and A. Z. Fedotova, Zh. Fiz. Khim., 34:832 (1960).Google Scholar
  92. 88.
    H. Gobrecht, R. Kuhnkies, and A. Tausend, Z. Elek-trochem., 63: 541 (1959).Google Scholar
  93. 89.
    R. M. Lazorenko-Manevich, Zh. Fiz. Khim., 38:1235 (1964); Electrochim. Acta, 10:141 (1965).Google Scholar
  94. 90.
    H. Gobrecht and O. Meinhardt, Ber. Bunsenges., 67: 142 (1963); R. Memming, Philips Res. Repts., 19:323 (1964); V. I. Veselovskii, T. I. Borisova, A. A. Yakov-leva, and S. O. Izidinov, Electrochim. Acta, 10:325 (1965).Google Scholar
  95. 91.
    H. Gerischer and F. Beck. Z. Phys. Chem., Frankfort, 13:389 (1957).Google Scholar
  96. 92.
    E. N. Paleolog, A. Z. Fedotova, and N. D. Tomashov, Dokl. Akad. Nauk SSSR, 129: 623 (1959).Google Scholar
  97. 93.
    W. Mehl, H. F. Gossenberger, and E. Helpert, J. Elec-trochem. Soc., 110: 239 (1963).Google Scholar
  98. 94.
    V. V. Eletskii and Yu. V. Pleskov, Elektrokhimiya, 1:194 (1965).Google Scholar
  99. 95.
    W. W. Harvey, J. Phys. Chem., 65:1641 (1961).Google Scholar
  100. 96.
    H. Kallmann and M. Pope, Nature, 185:753 (1960).Google Scholar
  101. 97.
    M. Silver, M. Swicord, R. C. Jarnagin, A. Many, S. C. Weisz, and M. Simhony, J. Phys. Chem. Solids, 23:419 (1962).Google Scholar
  102. 98.
    W. Helfrich and P. Mark, Z. Phys., 168:495 (1962).Google Scholar
  103. 99.
    R. C. Jarnagin, J. Gilliland, and J. S. Kim, J. Chem. Phys., 39:573 (1963).Google Scholar
  104. 100.
    Yu. V. Pleskov, Proceedings of International Conference on Semiconductor Physics, Prague (1961), p. 573.Google Scholar
  105. 101.
    Yu. V. Pleskov, Zh. Fiz. Khim., 35:2576 (1961).Google Scholar
  106. 102.
    Yu. V. Pleskov, Dissertation, Inst. Fiz.-Khim., Akad. Nauk SSSR, Moscow (1960).Google Scholar
  107. 103.
    Yu. V. Pleskov and V. A. Tyagai, Dokl. Akad. Nauk SSSR, 141:1135 (1961).Google Scholar
  108. 104.
    Yu. V. Pleskov, Zh. Fiz. Khim., 35:2540 (1961).Google Scholar
  109. 105.
    V. G. Levich, Physicochemical Hydrodynamics, Fiz-matgiz, Moscow (1959).Google Scholar
  110. 106.
    P. F. Schmidt and C. H. Church, J. Electrochem. Soc., 108:296 (1961).Google Scholar
  111. 107.
    Yu. V. Pleskov and B. N. Kabanov, Dokl. Akad. Nauk SSSR, 123:884 (1958).Google Scholar
  112. 108.
    Yu. V. Pleskov, Zh. Fiz. Khim., 34:623 (1960).Google Scholar
  113. 109.
    M. Balkanski, J. Bardeleben, and A. F. Bogenschutz, J. Chim. Phys., 57:507 (1960); C. Krischer, Dissertation, Techn. Hochschule, Stuttgart (1963); E. A. Efimov and I. G. Erusalimchik, Zh. Fiz. Khim., 38:2868 (1964).Google Scholar
  114. 110.
    V. A. Myamlin, Dokl. Akad. Nauk SSSR, 139:1153 (1961).Google Scholar
  115. 111.
    E. A. Efimov and I. G. Erusalimchik, Dokl. Akad. Nauk SSSR, 130:353 (1960); E. A. Efimov, I. G. Erusalimchik, and G. P. Sokolova, Zh. Fiz. Khim., 38:2172 (1964).Google Scholar
  116. 112.
    E. N. Paleolog, K. S. Korotkova, and N. D. Tomashov, Dokl. Akad. Nauk SSSR, 133:170 (1960).Google Scholar
  117. 113.
    R. M. Hurd and P. T. Wrotenbery, Ann. N. Y. Acad. Sci., 101:876 (1963).Google Scholar
  118. 114.
    S. O. Izidinov, T. I. Borisova, and V. I. Veselovskii, Zh. Fiz. Khim., 36:1246 (1962).Google Scholar
  119. 115.
    S. O. Izidinov, Dissertation, L. Ya. Karpova Physico-chemical Institute, Moscow (1963).Google Scholar
  120. 116.
    S. A. Greenberg and R. N. Sanders, J. Electrochem. Soc, 110:188C (1963).Google Scholar
  121. 117.
    V. A. Tyagai, Izv. Akad. Nauk SSSR, Ser. Khim. (1963), 1956.Google Scholar
  122. 118.
    T. P. Birintseva and Yu. V. Pleskov, Izv. Akad. Nauk SSSR, Ser. Khim. (1965), p. 251.Google Scholar
  123. 119.
    V. A. Tyagai, Izv. Akad. Nauk SSSR, Ser. Khim. (1964), 34.Google Scholar
  124. 120.
    V. I. Zvyagin and A. S. Lyutovich, Izv. Akad. Nauk UzSSR, Ser. Fiz.-Matem. Nauk (1959), p. 25.Google Scholar
  125. 121.
    H. Gobrecht, O. Meinhardt, and B. Reinicke, Ber. Bunsenges, 67: 493 (1963).Google Scholar
  126. 122.
    R. Williams, Phys. Rev., 123:1645 (1961).Google Scholar
  127. 123.
    R. Williams, J. Phys. Chem. Solids, 22:129 (1961).Google Scholar
  128. 124.
    K. Böke, Z. Naturforsch., 15a: 550 (1960).Google Scholar
  129. 125.
    G. Greger, Z. Naturforsch., 16a: 284 (1961).Google Scholar
  130. 126.
    M. Seipt, Z. Naturforsch., 14a: 926 (1959).Google Scholar
  131. 127.
    E. A. Efimov, I. G. Erusalimchik, and G. P. Sokolova, Zh. Fiz. Khim., 36:1219 (1962).Google Scholar
  132. 128.
    R. Williams, Phys. Rev., 125:850 (1961).Google Scholar
  133. 129.
    E. Maruyama, J. Phys. Soc. Japan, 16:2341 (1961).Google Scholar
  134. 130.
    J. I. Carasso and M. M. Faktor, Electrochemistry of Semiconductors (ed. P. J. Holmes), Academic Press, London-New York (1962), p. 205.Google Scholar
  135. 131.
    S. O. Izidinov, T. I. Borisova, and V. I. Veselovskii, Dokl. Akad. Nauk SSSR, 133: 392 (1960).Google Scholar
  136. 132.
    S. O. Izidinov, T. I. Borisova, and V I. Veselovskii, Dokl. Akad. Nauk SSSR, 145:598 (1962).Google Scholar
  137. 133.
    L. A. Dubrovskii, V. G. Mel’nik, and L. O. Odynets, Zh. Fiz. Khim., 36:2199 (1962).Google Scholar
  138. 134.
    A. Gee, J. Electrochem. Soc, 107:787 (1960); S. P. Maminova and L. L. Odynets, Electrokhimiya, 1:365 (1965); W. Waring and E. A. Benjamini, J. Electrochem Soc, 111:1256 (1964).Google Scholar
  139. 135.
    P. F. Schmidt and W. Michel, J. Electrochem. Soc, 104:230 (1957).Google Scholar
  140. 136.
    P. F. Schmidt, US Patent 2, 909, 470 (1959); Russ. Zh. Khim., 1:175 (1961); P. F. Schmidt and A. E. Owen, J. Electrochem. Soc, 111:682 (1964); P. F. Schmidt, Halbeiter und Phosphore, Braunschweig (1958), p. 570.Google Scholar
  141. 137.
    E. F. Duffék, C. Mylroie, and E. A. Benjamini, J. Electrochem. Soc., 111: 1042 (1964); S. P. Maminova and L. L. Odynets, Zh. Fiz. Khim., 39:531 (1965); P. F. Schmidt, R. Stickler, G. D. Rose, and A. N. Knopp, Electrochem. Technol., 3:49 (1965).Google Scholar
  142. 138.
    A. Politycky and E. Fuchs, Z. Naturforsch., 14a: 271 (1959); A. Revesz and K. Zaininger, J. Phys., 25:66 (1964).Google Scholar
  143. 139.
    L. Young, Anodic Oxide Films, Academic Press, London-New York (1961).Google Scholar
  144. 140.
    P. F. Schmidt, F. Huber, and R. F. Schwarz, J. Phys. Chem. Solids, 15:270 (1960).Google Scholar
  145. 141.
    D. A. Vermilyea, Advances in Electrochemistry and Electrochemical Engineering, Vol. 3 (ed. P. Delahay), Interscience Publishers, New York-London (1963), p. 211; N. G. Bardina, Usp. Khim., 33: 602 (1964).Google Scholar
  146. 142.
    P. F. Schmidt, J. Appl. Phys., 28:278 (1957).Google Scholar
  147. 143.
    L. S. Berman, Nonlinear Semiconductor Capacitance, Fizmatgiz, Moscow (1963).Google Scholar
  148. 144.
    S. Zwerdling and S. Sheff, J. Electrochem. Soc, 107: 338 (1960).Google Scholar
  149. 145.
    R. D. Wales, J. Electrochem. Soc, 110:914 (1963).Google Scholar
  150. 146.
    R. D. Wales, J. Electrochem. Soc, 111:478 (1964).Google Scholar
  151. 147.
    J. F. Dewald, J. Electrochem. Soc, 104:244 (1957).Google Scholar
  152. 148.
    M. C. Lavine, A. J. Rosenberg, and H. C. Gatos, J. Appl. Phys., 29:1131 (1958).Google Scholar
  153. 149.
    J. D. Venables and R. M Broudy, J. Appl. Phys., 30: 1110 (1959).Google Scholar
  154. 150.
    J. D. Venables and R. M. Broudy, J. Electrochem. Soc. 107:296 (1960).Google Scholar
  155. 151.
    P. D. Lukovtsev, Dissertation, Inst, Fiz.-Khim., Akad. Nauk SSSR (1952).Google Scholar
  156. 152.
    W. W. Gärtner, Phys. Rev., 116:84 (1959).Google Scholar
  157. 153.
    V. A. Tyagai, Zh. Fiz. Khim., 38:2472 (1964).Google Scholar
  158. 154.
    V. A. Tyagai, Fiz. Tverd. Tela, 6:1602 (1964).Google Scholar
  159. 155.
    R. A. Logan and A. G. Chynoweth, J. Appl. Phys., 33: 1649 (1962).Google Scholar
  160. 156.
    R. A. Logan, A. G. Chynoweth, and R. G. Cohen, Phys. Rev., 128:2518 (1962).Google Scholar
  161. 157.
    Yu. V. Pleskov, Elektrokhimiya, 1:4 (1965).Google Scholar
  162. 158.
    R. Williams, Phys. Rev., 117:1487 (1960).Google Scholar
  163. 159.
    V. I. Veselovskii, Dissertation, Moscow (1949).Google Scholar
  164. 160.
    S. Hemilä, J. Chem. Phys., 40:37, 3739 (1964).Google Scholar
  165. 161.
    P. J. Boddy and W. H. Brattain, Ann. N. Y. Acad. Sci., 101:683 (1963).Google Scholar
  166. 162.
    R. M. Lazorenko-Manevich, Dokl. Akad. Nauk SSSR, 144:1094 (1962).Google Scholar

Additional Literature

  1. Alpatova, N. M., Yu. M. Kessler, and A. I. Gorbanev, Anode behavior of silicon in some nonaqueous solutions, Elektrokhimiya, 1:844, 1344 (1965).Google Scholar
  2. Collard, J. R., and F. Sterzer, Dependence of the space-charge capacity of the reverse biased p-n junction on the current value, Appl. Phys. Letters, 5:165 (1964).Google Scholar
  3. Dogonadze, R. R., A. M. Kuznetsov, and A. A. Chernenko, Theory of homogeneous and heterogeneous electron processes in liquids, Usp. khim., 34:1779 (1965).Google Scholar
  4. Dogonadze, R. R., and A. M. Kuznetsov, Kinetics of oxidation-reduction reactions in the system impurity semiconductor-electrolyte solution, Elektrokhimiya, 1:742 (1965).Google Scholar
  5. Efimov, E. A., and I. G. Erusalimchik, Anode solution of gallium arsenide, Elektrokhimiya, 1:818 (1965).Google Scholar
  6. Eletskii, V. V., and Yu. V. Pleskov, Photoelectrochemical method of approximate measurement of diffusion length in semiconductors, Elektrokhimiya, 2 (in press).Google Scholar
  7. Gerischer, H., Über den Mechanismus der anodischen Auflösung der Galliumarsenid, Ber. Bunsenges., 69: 578 (1965).Google Scholar
  8. Kashcheeva, T. P., and Yu. V. Pleskov, Differential capacitance of a heavily doped germanium- electrolyte interphase, Elektrokhimiya, 2 (in press).Google Scholar
  9. Konorov, P. P., and O. V. Romanov, Volt-ampere characteristics of surface barriers in germanium at the interface with electrolytes, Vestn. Leningr. Gos. Univ., Ser. Fiz. Khim., 22:65 (1965).Google Scholar
  10. Lovrecek, B., and K. Moslavac, The anodic dissolution of germanium, Elektrochim. Acta, 10:627 (1965).Google Scholar
  11. Maninova, S. P., and L. L. Odynets, Electrochemical oxidation of silicon in ethylene glycol, Elektrokhimiya, 2:346 (1966).Google Scholar
  12. Many, A., Tunneling processes across the CdS- electrolyte interface, J. Phys. Chem. Solids, 26:587 (1965).Google Scholar
  13. Mehl, W., Redoxreaktionen an Antracenelektroden, Ber. Bunsenges., 69:583 (1965).Google Scholar
  14. Memming, P., and G. Schwandt, Anodic dissolution of silicon in hydrofluoric acid solutions, Surface Sci., 4:109 (1966).Google Scholar
  15. Reid, W. E., Some electrochemical aspects of germanium dissolution, J. Phys. Chem., 69:2269, 3168 (1965).Google Scholar
  16. Story, J. B., Mechanism of anodic germanium oxide film formation, J. Electrochem. Soc, 112:1107 (1965).Google Scholar
  17. Wolkenberg, A., Wptyw naswietlania na rozpusczanie sie elektrody germanowej w 0. 1 M NaNO3, Arch. Hutnictwa, 10:287 (1965).Google Scholar

Copyright information

© Springer Science+Business Media New York 1967

Authors and Affiliations

  • Viktor A. Myamlin
    • 1
  • Yurii V. Pleskov
    • 1
  1. 1.Institute of ElectrochemistryAcademy of Sciences of the USSRMoscowRussia

Personalised recommendations