Ion-Exchange Membranes—Correlation Between Structure and Function

  • Harry P. Gregor


The study of a complex system such as an ion-exchange membrane can be approached from two directions, which are not mutually exclusive. We can make use of the theoretical framework of irreversible thermodynamics as first applied by Staverman1 to membrane systems, and as amplified by a number of other investigators, particularly Kedem and Katchalsky2–4. Here, we measure fluxes and generalized forces (the latter all too often involving the estimation of thermodynamic activity coefficients) and compute the phenomenological coefficients. This is essentially a ‘‘black box” approach which must give us correct and exact answers, provided the requirement of linearity between flux and force is obeyed, as they seem to be under the conditions which obtain in these systems.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. J. Staverman. Trans. Faraday Soc. 48, 176 (1952).CrossRefGoogle Scholar
  2. 2.
    O. Kedem and A. Katchalsky. Biochim. Biophys. Acta 27, 229 (1958).CrossRefGoogle Scholar
  3. 3.
    O. Kedem and A. Katchalsky. J. Gen. Physiol. 45, 143 (1961).CrossRefGoogle Scholar
  4. 4.
    O. Kedem and A. Katchalsky. Trans. Faraday Soc. 59, 1918, 1931 (1963).CrossRefGoogle Scholar
  5. 5.
    Y. Tsunoda, M. Seko, M. Watnabe, T. Mikado, and Y. Yamagoshi. Jap. Patents 7290 and 7489.Google Scholar
  6. 6.
    E. Glueckauf and R. E. Watts. Proc. Roy. Soc. A268, 339 (1962).CrossRefGoogle Scholar
  7. 7.
    H. Kawabe, H. Jacobson, I. F. Miller, and H. P. Gregor. J. Colloid Sci. 21, 79 (1966).CrossRefGoogle Scholar
  8. 8.
    H. P. Gregor, et al., in preparation.Google Scholar
  9. 9.
    H. P. Gregor and J. I. Bregman. J. Colloid Sci. 6, 323 (1951).CrossRefGoogle Scholar
  10. 10.
    I. F. Miller and H. P. Gregor. J. Chem. Phys. 43, 1783 (1965).CrossRefGoogle Scholar
  11. 11.
    R. A. Robinson and R. H. Stokes. Electrolyte Solutions, 2nd Ed., Butterworths, London, 1959, p. 331.Google Scholar
  12. 12.
    R. Zwanzig. J. Chem. Phys. Google Scholar
  13. 13.
    D. F. Evans and R. L. Kay. J. Phys. Chem. 70, 366 (1966).CrossRefGoogle Scholar
  14. 14.
    W. Y. Wen and S. Saito. J. Phys. Chem. 68, 2639 (1964).CrossRefGoogle Scholar
  15. 15.
    H. P. Gregor, M. Rothenberg, and N. Fine. J. Phys. Chem. 67, 1110 (1963).CrossRefGoogle Scholar
  16. 16.
    H. S. Frank and M. W. Evans. J. Chem. Phys. 13, 507 (1945).CrossRefGoogle Scholar
  17. 17.
    H. S. Frank and W. Y. Wen. Disc. Faraday Soc. 24, 133 (1957).CrossRefGoogle Scholar
  18. 18.
    H.J. Ghaya. B.S. Thesis, Polytechnic Institute of Brooklyn, June, 1947.Google Scholar
  19. 19.
    H. P. Gregor, F. Gutoff, and J. I. Bregman. J. Colloid Sci. 6, 245 (1951).CrossRefGoogle Scholar
  20. 20.
    H. P. Gregor, J. Belle, and R. A. Marcus. J. Amer. Chem. Soc. 76, 1984 (1954).CrossRefGoogle Scholar
  21. 21.
    R. Gollander. Soc. Sci. Fenn. Biol. 2, 6 (1926).Google Scholar
  22. 22.
    P. G. Carman. Flow of Gases Through Porous Media, Academic Press, New York, 1956.Google Scholar
  23. 23.
    J. D. Ferry. Chem. Reviews 18, 373 (1936).CrossRefGoogle Scholar
  24. 24.
    H. Faxen. Arkiv Math. Astr. Fys. 17, No. 27, (1922).Google Scholar
  25. 25.
    J. R. Pappenheimer. Physiol. Reviews 33, 387 (1953);Google Scholar
  26. 25a.
    J. R. Pappenheimer, E. M. Renkin, and L. M. Borrero. Amer. J. Physiol. 167, 13 (1951).Google Scholar
  27. 26.
    E. M. Renkin. J. Gen. Physiol. 38, 225 (1954).Google Scholar
  28. 27.
    H. Faxen. Ann. Physik IV, 68, 89 (1922).CrossRefGoogle Scholar
  29. 28.
    H. P. Gregor. J. Amer. Chem. Soc. 70, 1293 (1948); 73, 642 (1951).CrossRefGoogle Scholar
  30. 29.
    M. Leszko and H. P. Gregor. Roczn. Chem. 40, (7/8) 1281 (1966).Google Scholar
  31. 30.
    F. Helfferich. Ion Exchange, McGraw-Hill, New York, 1962.Google Scholar
  32. 31.
    I. Kagawa and H. P. Gregor. J. Polymer Sci. 23, 477 (1957).CrossRefGoogle Scholar
  33. 32.
    F. Bernstein. Dissertation, Polytechnic Institute of Brooklyn, February, 1952.Google Scholar
  34. 33.
    H. P. Gregor, J. Belle, and R. A. Marcus. J. Amer. Chem. Soc. 76, 1984 (1954).CrossRefGoogle Scholar
  35. 34.
    M. H. Waxman, B. R. Sundheim, and H. P. Gregor. J. Phys. Chem. 57, 969 (1953).CrossRefGoogle Scholar
  36. 35.
    B. R. Sundheim, M. H. Waxman, H. P. Gregor. J. Phys. Chem. 57, 947 (1953).CrossRefGoogle Scholar
  37. 36.
    I. Belgovskiy and H. P. Gregor, to be published.Google Scholar
  38. 37.
    O. Wichterle. LU.P.A.C. Symposium on Macromolecular Chemistry, Prague, 1965.Google Scholar
  39. 38.
    Y. Okamoto and Y. Shimagawa. Tetrahedron Letters No 3, 317 (1966).CrossRefGoogle Scholar
  40. 39.
    T J. Gianinni. I. U.P.A.C. Symposium on Macromolecular Chemistry, Brussels, 1967.Google Scholar
  41. 40.
    H. P. Gregor and M. A. Peterson. J. Phys. Chem. 68, 2201 (1964).CrossRefGoogle Scholar
  42. 41.
    H. P. Gregor and L F. Miller. J. Amer. Chem. Soc. 86, 5689 (1964).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1968

Authors and Affiliations

  • Harry P. Gregor
    • 1
  1. 1.Polytechnic Institute of BrooklynNew YorkUSA

Personalised recommendations