Advertisement

Rapidly Pulsing Radio Sources

  • William C. Saslaw
  • John Faulkner
  • Peter A. Strittmatter

Abstract

Observations of a new type of rapidly varying radio source have recently been reported1. The principal characteristics of the four sources so far discovered may be summarized as follows—sharp pulses of radiation are received, separated by comparatively long intervals which themselves are remarkably constant (with variations of ≲ 1 part in 2 × 107 during the past 3 or 4 months). The pulse duration is no more than ~ 0·016 s, while the period is 1#x00B7;3372795 ±0#x00B7;0000020 s (ref. 1). We understand that the other objects show similar sharp pulses at intervals of the order of 1 s, which, although not identical, strongly suggest that a new type of physical system has been discovered. Hewish et al. propose that the objects may be pulsating white dwarfs or neutron stars. Although this may prove to be correct, there are certain difficulties associated with the constancy of the observed period. We suggest an alternative explanation for the observed phenomena.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hewish, A., Bell, S. J., Pilkington, J. D. H., Scott, P. F., and Collins, R. A., Nature, 217, 709 (1968), (Paper 1); and Hewish, A., Cavendish Colloquium, 20 February, 1968.ADSCrossRefGoogle Scholar
  2. 2.
    Liebes, Jun., S., Phys. Rev., 113 B, 835 (1963).Google Scholar
  3. 3.
    Meltzer, D., and Thome, K. S., Ap. J., 145, 514 (1966).ADSCrossRefGoogle Scholar
  4. 4.
    Hoyle, F., and Narlikar, J. V., Proc. Roy. Soc., 218, 465 (1963).Google Scholar
  5. 5.
    Allen, C. W., Astrophysical Quantities, second ed., 238 (Athlone Press, London, 1963).Google Scholar
  6. 6.
    Jeans, J., Astronomy and Cosmogony, second ed. (Dover Publ., 1961).Google Scholar
  7. 7.
    Lyttleton, R. A., The Stability of Rotating Liquid Masses (Cambridge Univ. Press, 1953).zbMATHGoogle Scholar
  8. 8.
    Hoyle, F., Narlikar, J. V., and Wheeler, J. A., Nature, 203, 914 (1964).ADSCrossRefzbMATHGoogle Scholar
  9. 9.
    Landau, L. D., and Lifshitz, E. M., Classical Theory of Fields (Addison Wesley, 1951).zbMATHGoogle Scholar
  10. 10.
    Zee, A., and Wheeler, J. A., as in Ann. Rev. Astro. Astrophys., 4, 393 (1966).ADSCrossRefGoogle Scholar
  11. 11.
    Tsuruta, S., and Cameron, A. G. W., Nature, 211, 356 (1966).ADSCrossRefGoogle Scholar
  12. 12.
    Bondi, H., Proc. Roy. Soc, A, 269, 21 (1962).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Kyle, M., and Bailey, J. A., Nature, 217, 907 (1968), (Paper 19).ADSCrossRefGoogle Scholar
  14. 14.
    Davies, J. G., Horton, P. W., Lyne, A. G., Rickett, B. J., and Smith, F. G., Nature, 217, 910 (1968), (Paper 6).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1968

Authors and Affiliations

  • William C. Saslaw
    • 1
  • John Faulkner
    • 2
  • Peter A. Strittmatter
    • 2
  1. 1.Department of Applied Mathematics and Theoretical PhysicsCambridgeUK
  2. 2.Institute of Theoretical AstronomyCambridgeUK

Personalised recommendations