Advertisement

Crystallization and Torsional Oscillations of Superdense Stars

  • M. A. Ruderman

Abstract

The nuclei of a piece of iron compressed to a density of 108 g cm3~ will arrange themselves into a body centred cubic lattice with a melting temperature near 2 × 108 °K, corresponding to a thermal energy about 1 per cent of the coulomb repulsion between neighbouring nuclei1. For matter near the end point of thermonuclear evolution compressed to still higher densities the dominant nuclear species shift towards very neutron rich nuclei, with Z between 30 and 50, which arrange themselves into crystal lattices with an even greater melting temperature. Crystallization among nuclei can occur up to densities close to that of conventional nuclear matter where those protons that remain cluster into very neutron-rich nuclei which are surrounded by and exchange neutrons with an ambient degenerate neutron sea. Because canonical neutron star interiors are estimated to cool to an average temperature below 5 × 108 °K in less than 103 years2–4, the outer regions of such stars should be solid.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Referenzen

  1. 1.
    Mestel, L., and Ruderman, M., Mon. Not. Roy. Astro. Soc, 136, 27 (1967).ADSGoogle Scholar
  2. 2.
    Tsuruta, S., and Cameron, A., Canad. J. Phys., 44, 1836 (1966).Google Scholar
  3. 3.
    Bahcall, J. N., and Wolf, R., A., Phys. Rev., 140, B1452 (1965).ADSCrossRefGoogle Scholar
  4. 4.
    Finzi, A., Phys. Rev., 137, B472 (1965).ADSCrossRefGoogle Scholar
  5. 5.
    Meltzer, D., and Thorne, K., Ap. J., 145, 514 (1966).ADSCrossRefGoogle Scholar
  6. 6.
    Hewish, A., Bell, S., Pilkington, J., Scott, P., and Collins, R., Nature, 217, 709 (1968), (Paper 1).ADSCrossRefGoogle Scholar
  7. 7.
    Wigner, E., Phys. Rev., 46, 1002 (1934).ADSCrossRefGoogle Scholar
  8. 8.
    Fuchs, K., Proc. Roy. Soc, 151, 585 (1935).ADSCrossRefzbMATHGoogle Scholar
  9. 9.
    Clark, C., Phys. Rev., 109, 1133 (1958).ADSCrossRefzbMATHGoogle Scholar
  10. 10.
    Lindemann, F., Phys. Z., 11, 609 (1910).zbMATHGoogle Scholar
  11. 11.
    Pines, D., Elementary Excitations in Solids, Benjamin, New York (1963).Google Scholar
  12. 12.
    Brush, S., Sahlin, H., and Teller, E. J. Chem. Phys., 45, 2102 (1966).ADSCrossRefGoogle Scholar
  13. 13.
    Tsuruta, S., and Cameron, A., Canad. J. Phys., 43, 2056 (1965).ADSCrossRefGoogle Scholar
  14. 14.
    Harrison, B., Thorne, K., Wakano, M., and Wheeler J., Gravitation Theory and Gravitational Collapse (University of Chicago, 1965).Google Scholar
  15. 15.
    Weiss, K., thesis, New York Univ. (1968).Google Scholar
  16. 16.
    Wolf, R., Ap. J., 145, 834 (1966).ADSCrossRefGoogle Scholar
  17. 17.
    Tsuruta, S., and Cameron, A., Canad. J. Phys., 44, 1895 (1966).ADSCrossRefGoogle Scholar
  18. 18.
    Abrikosov, A., and Khalatnikov, I., Reports on Progress in Physics XXII (The Physical Society, London, 1959).Google Scholar
  19. 19.
    Bardeen, J., Cooper, L., and Schrieffer, J., Phys. Rev., 108, 1175 (1957).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Kennedy, B., Willets, L., and Henley, E., Phys. Rev., 133, B1131 (1964).ADSCrossRefGoogle Scholar
  21. 21.
    Ginzburg, V., and Kirzhnita, Sov. Phys. JETP, 20, 1346 (1965).Google Scholar
  22. 22.
    Buderman, M., Fifth Eastern Theoretical Physics Conference Proceedings, edit, by Feldman, D. (Benjamin, New York, 1967).Google Scholar
  23. 23.
    Androninkashvili, E., and Mamaladze, Yu, Progress in Low Temperature Physics, 5 (North-Holland, Amsterdam, 1967).Google Scholar

Copyright information

© Springer Science+Business Media New York 1968

Authors and Affiliations

  • M. A. Ruderman
    • 1
  1. 1.Department of PhysicsImperial CollegeLondonUK

Personalised recommendations