Advertisement

Interfacial Polarization Effects Associated with Surfaces and Interfaces

  • N. M. Tallan
  • H. C. Graham
  • J. M. Wimmer
Conference paper
Part of the Materials Science Research book series (MSR)

Abstract

The dispersion of the capacitance and conductance of a specimen with frequency, arising from the presence of interfaces between regions of differing dielectric properties, can be used to study the geometry and electrical properties of the more conducting regions. The measurement and interpretation of these interfacial polarization effects are discussed, with particular emphasis on their application to studies of surface effects in single crystals. The results of experimental studies of the variation in electrical properties of relatively thick (approximately 10μ) surface layers in sapphire produced by the adsorption and desorption of gases, incomplete equilibration of composition in various oxygen partial pressures, and the presence of impurities and preliminary results of interfacial polarization studies in sodium chloride crystals are presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.C. Maxwell, Electricity and Magnetism, Vol. 1, Clarendon Press, (Oxford), 1892, p. 452.Google Scholar
  2. 2.
    K. W. Wagner, “Erklarung der dielektrischen Nachwirkungsvorgange auf Grund Maxwellscher Vorstellungen,” Arch. Elektrotechnik 2(9):371–387 (1914).CrossRefGoogle Scholar
  3. 3.
    R. W. Sillars, “The Properties of a Dielectric Containing Semiconducting Particles of Various Shapes,” J. Inst. Elec. Engrs. (London) 80(484):378–394 (1937).Google Scholar
  4. 4.
    H. Fricke, “The Maxwell-Wagner Dispersion in a Suspension of Ellipsoids,” J. Phys. Chem. 57(9): 934–937 (1953).CrossRefGoogle Scholar
  5. 5.
    J. Volger, “Dielectric Properties of Solids in Relation to Imperfections,” in: A. F. Gibson (ed.), Progress in Semiconductors, Vol. 4, John Wiley and Sons, (New York), 1960, pp. 206–236.Google Scholar
  6. 6.
    N. M. Tallan H.C. Graham, and R. W. Vest, “Origin of Apparent Negative Impedance in Three-Terminal Measurements,” Rev. Sci. Instr. 33(10): 1087–1088 (1962).CrossRefGoogle Scholar
  7. 7.
    W. Hartmann, “Electrische Untersuchungen an Oxydischen Halbleitern,” Z. Physik. 102(11): 709–733 (1936).CrossRefGoogle Scholar
  8. 8.
    N. M. Tallan and D. P. Detwiler, “An Anomalous Dissipation Factor Maximum in Sapphire,” J. Appl. Phys. 34(6): 1650–1656 (1963).CrossRefGoogle Scholar
  9. 9.
    I.I. Frenkel, Kinetic Theory of Liquids, Clarendon Press, (Oxford), 1946, pp. 36–40.zbMATHGoogle Scholar
  10. 10.
    K. Lehovec, “Space-Charge Layer and Distribution of Lattice Defects at the Surface of Ionic Crystals,” J. Chem. Phys. 21(7): 1123–1128 (1953).CrossRefGoogle Scholar
  11. 11.
    G. Parravano and C. A. Domenicali, “Thermoelectric Behavior of Solid Particulate Systems; Nickel Oxide,” J. Chem. Phys. 26(2): 359–366 (1957).CrossRefGoogle Scholar
  12. 12.
    Y. Oishi and W. D. Kingery, “Self-Diffusion of Oxygen in Single-Crystal and Polycrystalline Aluminum Oxide,” J. Chem. Phys. 33(2): 480–486 (1960).CrossRefGoogle Scholar
  13. 13.
    P.J. Harrop and R.H. Creamer, “The High-Temperature Electrical Conductivity of Single-Crystal Alumina,” Brit. J. Appl. Phys. 14(6): 335–359 (1963).CrossRefGoogle Scholar
  14. 14.
    R. W. Dreyfus and A.S. Nowick, “Ionic Conductivity of Doped NaCl Crystals,” Phys. Rev. 126(4): 1367–1377 (1962).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1966

Authors and Affiliations

  • N. M. Tallan
    • 1
  • H. C. Graham
    • 1
  • J. M. Wimmer
    • 1
  1. 1.Aeronautical Research Laboratories (U. S. Air Force)Wright-Patterson Air Force BaseUSA

Personalised recommendations