Surface Reoxidation Phenomena in Certain Ceramics With a Nonstoichiometric Perovskite Structure

  • J. Dubuisson
  • P. Basseville
Conference paper
Part of the Materials Science Research book series (MSR)


The apparent dielectric constant of a disk of modified barium titanate reaches a permittivity value of 500,000 after successive reduction-reoxidation steps. Reduction and the ensuing reoxidation phenomena are enhanced when ions, such as Ce+4, are present. Starting from a certain degree of reduction, a reorganization of the structure occurs on reoxidation and allotropic transformation points vanish. Evidence of surface reoxidation is shown by the appearance of a barrier layer having a rectifying effect. Structure blocking can be obtained also by action of an oxide, such as Bi2O3.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.C. Slater, Phys. Rev. 78: 748 (1950).CrossRefzbMATHGoogle Scholar
  2. 2.
    G. J. Skanavi, Dokl. Akad. Nauk SSSR 59: 231 (1948).Google Scholar
  3. 3.
    J.H. Van Santen and W. Opechowski, Physica 14: 545 (1948).CrossRefGoogle Scholar
  4. 4.
    R. Wyss, “Une Contribution à 1′ Étude de la Réduction de l’Oxyde de Titane et de Quelques Titanates,” Ann. Chim. (Paris) 12(3):215–242 (1948).Google Scholar
  5. 5.
    O. Saburi, “Properties of Semiconductive Barium Titanates,” J. Phys. Soc. Japan 14(9):1159–1174 (1959).CrossRefGoogle Scholar
  6. 6.
    RCA, “Dielectric Ceramic Composition and Method of Producing It,” British Patent No. 664370.Google Scholar
  7. 7.
    C. Wentworth, “High Dielectric Materials and Method of Producing Them,” U.S. Patent No. 2529719.Google Scholar
  8. 8.
    R.R. Roup and C. E. Butler, “Layerized High Dielectric Constant Piece for Capacitors and Process for Making Same,” U. S. Patent No. 2520376 and British Patent No. 682794.Google Scholar
  9. 9.
    R. M. Glaister and G. V. Planer, “Dielectric Ceramic Composition and the Method of Production Thereof,” British Patent No. 861346.Google Scholar
  10. 10.
    Siemens, German Patent No. 964,020 (1959) and French Patent No. 1262998 (1961).Google Scholar
  11. 11.
    P. Frappart, French Patent No. 853535 (1961).Google Scholar
  12. 12.
    P. Basseville, Marche d’Études DGRST, No. 64 FR 017: 7 (1964).Google Scholar
  13. 13.
    O. Saburi and K. Wakind, “Processing Techniques and Applications of Positive Temperature Coefficient Thermistors,” IEEE Trans. Compt. Parts CP-10(2):53–67 (1963).CrossRefGoogle Scholar
  14. 14.
    R.C. de Vries, “Lowering of Curie Temperature of BaTiO3 by Chemical Reduction,” J. Am. Ceram. Soc. 43(4):226 (1960).CrossRefGoogle Scholar
  15. 15.
    R. M. Glaister, “Barrier-LayerDielectrics,” Proc. Inst. Elec. Engrs. 109(22B):423–431 (1961).Google Scholar
  16. 16.
    J. Grosvalet and M. Laviron, CSF, personal memorandum (1964).Google Scholar
  17. 17.
    G.G. Blowers, G.T. Hurry, and F. Welsby, “Ceramics Capacitors,” Proc. Inst. Elec. Engrs. 109(22B):466–471 (1961).Google Scholar
  18. 18.
    E.J. W. Verwey P.W. Haayman F.C. Romeyn, and G. W. Van Costerhout, Philips Res. Rept. 5(3): 173 (1950).Google Scholar
  19. 19.
    J. Suchet, Bull Soc. Franc. Elec. 5(53):274–294 (1955)Google Scholar
  20. J. Suchet, Chimie Physique des Semiconducteurs, Dunod, (Paris), 1961, pp. 127–128.Google Scholar
  21. 20.
    C. G. Koops, “On the Dispersion of Resistivity and Dielectric Constant of Some Semiconductors at Audio Frequencies,” Phys. Rev. 83(1): 121–124 (1951).CrossRefGoogle Scholar
  22. 21.
    L. Nicolini, Italian Patent No. 492,404.Google Scholar
  23. 22.
    J. Guyonnet, LCC-Stéafix Internal Report No. 2122 (Feb. 1962) and No. 2181 (March 1962).Google Scholar

Copyright information

© Springer Science+Business Media New York 1966

Authors and Affiliations

  • J. Dubuisson
    • 1
  • P. Basseville
    • 1
  1. 1.LCC-Stéafix CompanyMontreuil-SeineFrance

Personalised recommendations