Complex-Ion Embrittlement of Silver Chloride

  • A. R. C. Westwood
  • D. L. Goldheim
  • E. N. Pugh
Conference paper
Part of the Materials Science Research book series (MSR)


Previous studies have revealed that when polycrystalline AgCl is deformed in aqueous solutions containing complex ions of high negative charge, e.g., AgCl4 −3, Ag(SCN)4 −3, and Ag(S2O3)3 −5, the fracture mode changes from ductile and transcrystalline (as in air) to brittle and intercrystalline. In the present paper, it is demonstrated that: (1) embrittlement in chloride environments can be prevented by the presence, in solution, of inhibitor ions such as K+, Cs+, Zn+2, Cd+2, and Hg+2; (2) embrittlement can be induced by complex ions of high positive charge; and (3) monocrystals can be embrittled, providing they contain a pre-existing crack. Studies of monocrystal fracture surfaces have revealed that the fracture process is discontinuous. For this and other reasons discussed, it is concluded that embrittlement cannot be explained on the basis of a dissolution-dependent mechanism, but is more likely to be associated with the adsorption of complex ions of high charge in the vicinity of strained surface bonds. It is suggested that the charge on the complex induces a localized redistribution of the shared electrons constituting the bond, effectively reducing its strength and causing the bond to break at an abnormally low stress level.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T.L. Johnston and E.R. Parker, Rept. on Contract No. N7-ONR-29516 NR 031-255, Jan. 1957.Google Scholar
  2. 2.
    A.R.C. Westwood, E.N. Pugh, and D. L. Goldheim, Phil. Mag. 10: 345 (1964).CrossRefGoogle Scholar
  3. 3.
    A.R.C. Westwood D.L. Goldheim, and E.N. Pugh, “Dislocations in Solids,” Disc. Faraday Soc. 38: 147 (1964).CrossRefGoogle Scholar
  4. 4.
    E. Levine H. Solomon, and I. Cadoff, Acta Met. 12: 1119 (1964).CrossRefGoogle Scholar
  5. 5.
    J. Kratohvil B. Tezak, and V. B. Vouk, Arkhiv. Kern. (English Transi.) 26: 191 (1954).Google Scholar
  6. 6.
    A.R.C. Westwood, RIAS Rept. No. 126, Aug. 1962.Google Scholar
  7. 7.
    G. S. Forbes, J. Am. Chem. Soc. 33: 1937 (1911).CrossRefGoogle Scholar
  8. 8.
    J. Kendall and C.H. Sloan, J. Am. Chem. Soc. 47: 2306 (1925).CrossRefGoogle Scholar
  9. 9.
    A.R.C. Westwood, RIAS Rept. No. 162, Jan. 1964.Google Scholar
  10. 10.
    A.R.C. Westwood and M. H. Kamdar, Phil. Mag. 8: 787 (1963).CrossRefGoogle Scholar
  11. 11.
    A.R.C. Westwood, in: Fracture of Solids, Interscience, (New York), 1963, p. 553.Google Scholar
  12. 12.
    A.R.C. Westwood, Phil. Mag. 9: 199 (1964).CrossRefGoogle Scholar
  13. 13.
    A.R.C. Westwood D.L. Goldheim, and E.N. Pugh, Acta. Met. 13: 695 (1965).CrossRefGoogle Scholar
  14. 14.
    M.H. Kamdar and A.R.C. Westwood, in: Environment-Sensitive Mechanical Behavior, Gordon and Breach (New York), to be published.Google Scholar
  15. 15.
    P.E. Goddard and F. Urbach, J. Chem. Phys. 20: 1975 (1952).CrossRefGoogle Scholar
  16. 16.
    E. Levine and I. Cadoff, discussion to A.R.C. Westwood D.L. Goldheim, and E.N. Pugh, “Dislocations in Solids,” Disc. Faraday Soc. 38: 188 (1964).Google Scholar
  17. 17.
    F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Interscience, (New York), 1962, p. 329.Google Scholar
  18. 18.
    A. Joffe, N.W. Kirpitschewa, and M.A. Lewitsky, Z. Physik. 22: 286 (1924).CrossRefGoogle Scholar
  19. 19.
    A.R. C. Westwood, Materials Science Research, Vol. 1, Plenum Press, (New York), 1963, p. 114.CrossRefGoogle Scholar
  20. 20.
    K.H. Leiser, Z. Anorg. Allgem. Chem. 304: 296 (1960).CrossRefGoogle Scholar
  21. 21.
    F. A. Cotton and G. Wilkinson, op. cit., p. 471.Google Scholar
  22. 22.
    C. Brink and C.H. McGillivray, Acta Cryst. 2: 158 (1949).CrossRefGoogle Scholar
  23. 23.
    L.H. Jones and R. A. Penneman, J. Chem. Phys. 22: 965 (1954).CrossRefGoogle Scholar
  24. 24.
    F. A. Cotton and G. Wilkinson, op. cit., p. 321.Google Scholar
  25. 25.
    E. Matijevik, private communication.Google Scholar
  26. 26.
    K.H. Leiser, Z. Anorg. Allgem. Chem. 292: 97 (1957).CrossRefGoogle Scholar
  27. 27.
    K.H. Leiser, Z. Anorg. Allgem. Chem. 305: 255 (1960).CrossRefGoogle Scholar
  28. 28.
    J. Bjerrum, G. Swarzenbach, and L. G. Sillen, Stability Constants, Chemical Soc. (London), 1958.Google Scholar
  29. 29.
    L.S. Bryukhanova, I.A. Andreeva, and V.I. Likhtman, Soviet Phys.-Solid State (English Transi.) 3: 2025 (1962).Google Scholar
  30. 30.
    H. Nichols and W. Rostoker, Acta Met. 9: 504 (1961).CrossRefGoogle Scholar
  31. 31.
    K. B. Yatsimirski and V. P. Vasilev, Instability Constants of Complex Compounds, Pergamon Press, (London), 1960.Google Scholar
  32. 32.
    S. Ahrland J. Chatt, and N.R. Davies, Quart. Rev. (London) 12: 265 (1958).CrossRefGoogle Scholar
  33. 33.
    C. K. Jorgensen, Inorganic Complexes, Academic Press, (New York), 1963, p. 52.Google Scholar
  34. 34.
    J. J. Gilman C. Knudsen, and W. P. Walsh, J. Appl. Phys. 29: 601 (1958).CrossRefGoogle Scholar
  35. 35.
    L. Pauling, The Nature of the Chemical Bond, 2nd edition, Cornell Press, (Ithaca), 1940, p. 73.Google Scholar

Copyright information

© Springer Science+Business Media New York 1966

Authors and Affiliations

  • A. R. C. Westwood
    • 1
  • D. L. Goldheim
    • 1
  • E. N. Pugh
    • 1
  1. 1.Research Institute for Advanced StudiesMartin CompanyBaltimoreUSA

Personalised recommendations