Advertisement

Oxygen-18 Diffusion in Surface Defects on MgO as Revealed by Proton Activation

  • J. Birch Holt
  • Ralph H. Condit
Conference paper
Part of the Materials Science Research book series (MSR)

Abstract

A study of the effect of surface defects on the self-diffusion of oxygen in MgO is reported. The technique involves exchange with oxygen-18 enriched gas followed by proton bombardment to yield the radioisotope, fluorine-18. This may be treated as a normal radioactive tracer. The penetration distribution of the oxygen isotope is indicated by autoradiography. Preferential diffusion of oxygen down bicrystal grain boundaries is definitely proven. Dislocations introduced by cold-working are found to contribute to the overall rate of oxygen diffusion. Surface fractures are shown to be important channels for the rapid movement of oxygen. The implications of these findings are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.H. Condit and J.B. Holt, J. Electrochem. Soc. 111: 1192 (1964).CrossRefGoogle Scholar
  2. 2.
    J. F. Laurent and J. Bénard, Compt. Rend. 241:1204 (1955).Google Scholar
  3. J. F. Laurent and J. Bénard, Phys. Chem. Solids 7: 218 (1958).CrossRefGoogle Scholar
  4. 3.
    Y. Oishi and W.D. Kingery, J. Chem. Phys. 33: 905 (1960).CrossRefGoogle Scholar
  5. 4.
    A.E. Paladino, E. A. Maguire, and L.G. Rubin, J. Am. Ceram. Soc. 47: 280 (1964).CrossRefGoogle Scholar
  6. 5.
    T. Y. Tien, J. Appl. Phys. 35: 122 (1964).CrossRefGoogle Scholar
  7. 6.
    A.E. Paladino and R. L. Coble, J. Am. Ceram. Soc. 46: 133 (1963).CrossRefGoogle Scholar
  8. 7.
    R.L. Coble, J. Appl. Phys. 34: 1679 (1963).CrossRefGoogle Scholar
  9. 8.
    S. Yukawa and M. J. Sinnott. Trans. AIME 203:996 (1955).Google Scholar
  10. 9.
    D. Turnbull and R. E. Hoffman, Acta Met. 2: 419 (1954).CrossRefGoogle Scholar
  11. 10.
    C. Leymonie and P. Lacombe, Rev. Met. 54: 653 (1957).Google Scholar
  12. 11.
    J. Cabańe, J. Chem. Phys. 59: 1123 (1962).Google Scholar
  13. 12.
    J.C. Fisher, J. Appl. Phys. 22: 74 (1951).CrossRefGoogle Scholar
  14. 13.
    R.T. P. Whipple. Phil. Mag. 45:1225 (1954).zbMATHGoogle Scholar
  15. 14.
    H. S. Levine and C. J. MacCallum, J. Appl. Phys. 31: 595 (1960).CrossRefGoogle Scholar
  16. 15.
    T. Suzuoka, Trans. Japan Inst. Metals 2: 25 (1961).Google Scholar
  17. 16.
    S.M. Klotsman and A.N. Orlov, Issled. po Zharoproch. Splavam, Akad. Nauk SSSR, Inst. Met. 4: 90 (1959).Google Scholar
  18. 17.
    A. D. LeClaire, Brit. J. Appl. Phys. 14: 351 (1963).CrossRefGoogle Scholar
  19. 18.
    Y. Oishi and W.D. Kingery, J. Appl. Phys. 33: 905 (1960).Google Scholar
  20. 19.
    R. J. Stokes T.L. Johnston, and C.H. Li, Phil. Mag. 3: 718 (1958).CrossRefGoogle Scholar
  21. 20.
    R. J. Stokes, T. L. Johnston, and C.H. Li, Trans. AIME 215: 437 (1959).Google Scholar
  22. 21.
    A. S. Keh, J. Appl. Phys. 31: 1538 (1960).CrossRefGoogle Scholar
  23. 22.
    J.B. Holt, J. Nucl. Mater. 11: 107 (1964).CrossRefGoogle Scholar
  24. 23.
    G. W. Groves and A. Kelly, J. Appl. Phys. Suppl. 33: 456 (1962).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1966

Authors and Affiliations

  • J. Birch Holt
    • 1
  • Ralph H. Condit
    • 1
  1. 1.Lawrence Radiation LaboratoryUniversity of CaliforniaLivermoreUSA

Personalised recommendations