Advertisement

Deformation of Polycrystalline Ceramics

  • Stephen M. Copley
  • Joseph A. Pask
Conference paper
Part of the Materials Science Research book series (MSR)

Abstract

The mechanical behavior of nominally dense, pure, polycrystalline, ceramic materials in which dislocations are mobile is discussed. Deformation by crystallographic slip is first considered. The von Misés analysis is developed for a two-dimensional polycrystalline aggregate, and a generalization is then made to three dimensions and to simple ceramic structures. Deformation by grain boundary sliding is also considered. Stress-strain curves and photomicrographs are presented for two types of polycrystalline MgO at temperatures up to 1500°C that illustrate both deformation modes. Problems encountered in realizing deformation of polycrystalline ceramic materials are reviewed, and methods for modifying the behavior of ceramic materials in which dislocations are mobile are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. von Misés, “Mechanik der plastichen Formänderung von Kristallen (Mechanics of Plastic Deformation of Crystals),” Z. Angew. Math. Mech. 8: 161 (1928).CrossRefzbMATHGoogle Scholar
  2. 2.
    J. F. W. Bishop, “A Theoretical Examination of the Plastic Deformation of Crystals by Glide,” Phil. Mag. 44:51–64 (1953).Google Scholar
  3. 3.
    G. I. Taylor, “Plastic Strain in Metals,” J. Inst. Metals 62:307–324 (1938).Google Scholar
  4. 4.
    G.W. Groves and A. Kelly, “Independent Slip Systems in Crystals,” Phil. Mag. 8:877–887 (1963).CrossRefGoogle Scholar
  5. 5.
    J. J. Gilman, “Plastic Anisotropy of LiF and Other Rocksalt-Type Crystals,” Acta Met. 7:608–613 (1959).CrossRefGoogle Scholar
  6. 6.
    R. J. Stokes and C. H. Li, “Dislocations and the Strength of Polycrystalline Ceramics,” in: H.H. Stadelmaier and W.W. Austin (eds.), Materials Science Research, Vol. 1, Plenum Press, (New York), 1963, pp. 133–157.CrossRefGoogle Scholar
  7. 7.
    R. D. Carnahan T.L. Johnston R.J. Stokes, and C. H. Li, “Effect of Grain Size on the Deformation of Polycrystalline Silver Chloride at Various Temperatures,” Trans. AIME 221:45–49 (1961).Google Scholar
  8. 8.
    N.S. Stoloff D.K. Lezius, and T. L. Johnston, “Effect of Temperature on the Deformation of KCl-KBr Alloys,” J. Appl. Phys. 34: 3315–3322 (1963).CrossRefGoogle Scholar
  9. 9.
    D.W. Budworth and J. A. Pask, “Flow Stress on the {100} and {110} Planes in LiF, and the Plasticity of Polycrystals,” J. Am. Ceram. Soc. 46: 560–561 (1963).CrossRefGoogle Scholar
  10. 10.
    R. Scheuplein and P. Gibbs, “Surface Structure in Corundum: II, Dislocation Structure and Fracture of Deformed Single Crystals,” J. Am. Ceram. Soc. 45: 439–452 (1962).CrossRefGoogle Scholar
  11. 11.
    M. K. Kronberg, “Dynamical Flow Properties of Single Crystals of Sapphire,” J. Am. Ceram. Soc. 45: 274–279 (1962).CrossRefGoogle Scholar
  12. 12.
    P.R.V. Evans, “Effect of Microstructure,” in: N. A. Weil (ed.), Studies of the Brittle Behavior of Ceramic Materials, U.S. Air Force Report ASD-TR-61-628, Part II, 1963, pp. 164–202.Google Scholar
  13. 13.
    S. M. Copley, “Independent Slip Systems in CsCl-Type Crystals,” Phil. Mag. 8: 1599 (1963).CrossRefGoogle Scholar
  14. 14.
    L.D. Johnson and J.A. Pask, “Mechanical Behavior of Single-Crystal and Polycrystalline Cesium Bromide,” J. Am. Ceram. Soc. 47: 437–444 (1964).CrossRefGoogle Scholar
  15. 15.
    C. Roy, Ph.D. Thesis, Imperial College of Sciences and Technology, London, 1962.Google Scholar
  16. 16.
    K.H.G. Ashbee and R.E. Smallman, “Stress-Strain Behavior of Titanium Dioxide (Rutile) Single Crystals,” J. Am. Ceram. Soc. 46: 211–214 (1963).CrossRefGoogle Scholar
  17. 17.
    J. Hornstra, “Dislocations in Spinels and Related Structures,” in: H.H. Stadelmaier and W.W. Austin (eds.), Materials Science Research, Vol. 1, Plenum Press, (New York), 1963, pp. 88–97.CrossRefGoogle Scholar
  18. 18.
    W.S. Williams and R.D. Schaal, “Elastic Deformation, Plastic Flow, and Dislocations in Single Crystals of Titanium Carbide,” J. Appl. Phys. 33: 955–962 (1962).CrossRefGoogle Scholar
  19. 19.
    W. S. Williams, “Influence of Temperature, Strain Rate, Surface Condition, and Composition on the Plasticity of Transition Metal Carbide Crystals,” J. Appl. Phys. 35: 1329–1338 (1964).CrossRefGoogle Scholar
  20. 20.
    J.B. Wachtman and D. G. Lam, “Young’s Modulus of Various Refractory Materials as a Function of Temperature,” J. Am. Ceram. Soc. 42: 254–260 (1959).CrossRefGoogle Scholar
  21. 21.
    R. Chang, “High-Temperature Creep and Anelastic Phenomena in Polycrystalline Refractory Oxides,” J. Nucl. Mater. 1: 174–181 (1959).CrossRefGoogle Scholar
  22. 22.
    M. A. Adams and G. T. Murray, “Direct Observations of Grain-Boundary Sliding in Bi-Crystals of Sodium Chloride and Magnesia,” J. Appl. Phys. 33: 2126–2131 (1962).CrossRefGoogle Scholar
  23. 23.
    G. T. Murray and A. J. Mountvala, “The Role of the Grain Boundary in the Deformation of Ceramic Materials,” U.S. Air Force Report ASD-TDR-62-225, Part II (Contract AF 33(616)-7961), March 1963, p. 24.Google Scholar
  24. 24.
    C.O. Hulse and J.A. Pask, “Mechanical Properties of Magnesia Single Crystals in Compression,” J. Am. Ceram. Soc. 43: 373–378 (1960).CrossRefGoogle Scholar
  25. 25.
    C.O. Hulse, S.M. Copley, and J.A. Pask, “Effect of Crystal Orientation on Plastic Deformation of Magnesium Oxide,” J. Am. Ceram. Soc. 46: 317–323 (1963).CrossRefGoogle Scholar
  26. 26.
    S. M. Copley and J. A. Pask, “Plastic Deformation of MgO Single Crystals up to 1600°C,”, J. Am. Ceram. Soc. 48: 139–146 (1965).CrossRefGoogle Scholar
  27. 27.
    R.B. Day and R. J. Stokes, “Mechanical Behavior of Magnesium Oxide at High Temperatures,” J. Am. Ceram. Soc. 47: 493–503 (1964).CrossRefGoogle Scholar
  28. 28.
    R. W. Rice, “Production of Transparent MgO at Moderate Temperatures and Pressures,” presented at the Sixty-Fourth Annual Meeting Am. Ceram. Soc. (New York) (White Wares Division, No. 5), April 30, 1962.Google Scholar
  29. 29.
    C. O. Hulse and S. M. Copley, “High-Temperature Compressive Deformation Equipment,” to be published.Google Scholar
  30. 30.
    W.D. Scott and J.A. Pask, “Deformation and Fracture of Polycrystalline LiF,” J. Am. Ceram. Soc. 46: 284–293 (1963).CrossRefGoogle Scholar
  31. 31.
    B.H. Kear A. Taylor, and P. L. Pratt, “Some Dislocation Interactions in Simple Ionic Crystals,” Phil. Mag. 4: 665–672 (1959).CrossRefGoogle Scholar
  32. 32.
    A. E. Gorum W.J. Luhman, and J.A. Pask, “Effect of Impurities and Heat Treatment on Ductility of MgO,” J. Am. Ceram. Soc. 43: 241–245 (1960).CrossRefGoogle Scholar
  33. 33.
    R. J. Stokes and C.H. Li, “Dislocations and the Tensile Strength of Magnesium Oxide,” J. Am. Ceram. Soc. 46: 423–434 (1963).CrossRefGoogle Scholar
  34. 34.
    A. E. Gorum, E.R. Parker, and J.A. Pask, “Effect of Surface Conditions on Room-Temperature Ductility on Ionic Crystals,” J. Am. Ceram. Soc. 41: 161–164 (1958).CrossRefGoogle Scholar
  35. 35.
    R. J. Stokes T.L. Johnston, and C.H, Li, “Crack Formation in MgO Single Crystals,” Phil. Mag. 3: 718–725 (1958).CrossRefGoogle Scholar
  36. 36.
    R.J. Stokes T.L. Johnston, and C.H. Li, “Further Observations of Stroh Cracks in MgO Single Crystals,” Phil. Mag. 4: 137 (1959).CrossRefGoogle Scholar
  37. 37.
    R.J. Stokes T.L. Johnston, and C.H. Li, “The Relationship Between Plastic Flow and Fracture Mechanism in MgO Single Crystals,” Phil. Mag. 4: 920–932 (1959).CrossRefGoogle Scholar
  38. 38.
    R.J. Stokes T.L. Johnston, and C.H. Li, “Effect of Surface Condition on the Initiation of Plastic Flow in MgO,” Trans. AIME 215:437–444 (1959).Google Scholar
  39. 39.
    J. J. Gilman, “Creation of Cleavage Steps by Dislocations,” Trans. AIME 212:310–315 (1958).Google Scholar
  40. 40.
    C. Zener, “The Micromechanisms of Fracture,” in: F. Jonassin, W. P. Roop, and R.T. Bayless (eds.), Fracturing of Metals, American Society of Metals, (Cleveland), 1948, pp. 3–31.Google Scholar
  41. 41.
    A.N. Stroh, “The Formation of Cracks as a Result of Plastic Flow,” Proc. Roy. Soc. (London) A223: 404 (1954).CrossRefMathSciNetGoogle Scholar
  42. 42.
    A.N. Stroh, “The Formation of Cracks in Plastic Flow, II,” Proc. Roy. Soc. (London) A232: 548 (1955).CrossRefGoogle Scholar
  43. 43.
    A. S. Argon and E. Orowan, “Crack Nucleation in MgO Single Crystals,” Phil. Mag. 9: 1023–1039 (1964).CrossRefGoogle Scholar
  44. 44.
    T. L. Johnston, R.J. Stokes, and C.H. Li, “Crack Nucleation in Magnesium Oxide Bi-Crystals Under Compression,” Phil. Mag. 7: 23–34 (1962).CrossRefGoogle Scholar
  45. 45.
    A. R. C Westwood, “On the Fracture of Magnesium Oxide Bi-Crystals,” Phil. Mag. 6: 195 (1961).CrossRefGoogle Scholar
  46. 46.
    R.C Ku and T. L. Johnston, “Fracture Strength of MgO Bicrystals,” Ford Motor Company Scientific Laboratory Report, Dearborn, Michigan, 1963.Google Scholar
  47. 47.
    T. L. Johnston and E.R. Parker, “Fracture of Nonmetallic Crystals,” in: D. C. Drucker and J.J. Gilman (eds.), Fracture of Solids, Interscience Publishers, (New York), 1963, pp. 267–287.Google Scholar
  48. 48.
    E.R. Parker, “Fracture of Ceramic Materials,” in: B. L. Averbach, D. K. Felbeck, G. T. Hahn, and D. A. Thomas (eds.), M.I.T. Press and John Wiley and Sons, Inc., (New York), 1959, pp. 181–192.Google Scholar
  49. 49.
    R.D. Carnahan, “Mechanical Behavior of Hot-Pressed MgO Containing a Dispersed Phase,” J. Am. Ceram. Soc. 47: 305–306 (1954).CrossRefGoogle Scholar
  50. 50.
    D. A. Jones and J. W. Mitchell, “Observations on Helical Dislocations in Crystals of Silver Chloride,” Phil. Mag. 3: 1 (1958).CrossRefGoogle Scholar
  51. 51.
    F. P. Bullen F. Henderson, and H. L. Wain, “The Effect of Hydrostatic Pressure on Brittleness in Chromium,” Phil. Mag. 9: 803 (1964).CrossRefGoogle Scholar
  52. 52.
    A. Kelly and F. J. P. Clarke, “Tougher Ceramics,” Trans. Brit. Ceram. Soc. 62: 785–791 (1963).Google Scholar
  53. 53.
    T.S. Liu R.J. Stokes, and C.H. Li, “Fabrication and Plastic Behavior of Single Crystal MgO-NiO and MgO-MnO Solid-Solution Alloys,” J. Am. Ceram. Soc. 47: 276–279 (1964).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1966

Authors and Affiliations

  • Stephen M. Copley
    • 1
  • Joseph A. Pask
    • 2
  1. 1.Pratt & Whitney AircraftNorth HavenUSA
  2. 2.University of CaliforniaBerkeleyUSA

Personalised recommendations