Advertisement

Melt Growth of Refractory Oxide Single Crystals

  • Howard M. Dess

Abstract

In the same manner that the discovery of the transistor in the 1940’s triggered the start of an enormously productive era of crystal growth work on silicon, germanium, and related semiconductor materials, so did the first successful demonstration of laser action in ruby in 1960 (3) act as a powerful stimulus for crystal growth research and development efforts in the field of refractory oxidic materials. In both cases, extraordinary exertions by crystal growers were necessitated by the urgent demands for single crystals with unprecedented purity levels, degree of perfection, and large size. The laser situation was further complicated by the fact that many of the compositions of greatest potential interest as hosts were much higher melting (for example, melting point of ruby, 2,050°C; Y3Al5O12, YAG, 1,970°C.) than the most familiar semiconductor materials (germanium, 958.5°C.; silicon, 1,410°C.). This, in turn, relates to problems of containment and contamination of melts which in general are quite different for these two classes of materials.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    General References on Crystal Growth Theory, Techniques, and Experimental Methods.Google Scholar
  2. a.
    Buckley, H. E., “Crystal Growth,” Wiley, New York (1951).Google Scholar
  3. b.
    Gilman, J. J., ed., “The Art and Science of Growing Crystals,” Wiley, New York (1963).Google Scholar
  4. c.
    Lawson, W. D., and S. Nielsen, “Preparation of Single Crystals,” Academic Press, New York (1958).Google Scholar
  5. d.
    Peiser, H. S., ed., “Crystal Growth; Proceedings of an International Conference on Crystal Growth, Boston, 20–24 June 1966,” Pergamon Press, New York (1967).Google Scholar
  6. 2.
    General References Which Emphasize Theoretical Aspects of Melt Growth.Google Scholar
  7. a.
    Pfann, W. G., “Zone Melting,” 2 ed., Wiley, New York (1966).Google Scholar
  8. b.
    Chalmers, B., “Principles of Solidification,” Wiley, New York.Google Scholar
  9. c.
    Zief, M., and W. R. Wilcox, ed., “Fractional Solidification,” M. Dekker, New York (1967).Google Scholar
  10. 3.
    Maiman, T. H., Nature, 187, 493–494 (1960).ADSCrossRefGoogle Scholar
  11. 4.
    Charvat, F. R., J. C. Smith, and O. H. Nestor, “Crystal Growth; Proceedings of an International Conference on Crystal Growth,’ p. 45, Pergamon Press, New York (1967).Google Scholar
  12. 5.
    Kestigan, M., and W. W. Holloway, Jr., ibid., p. 453.Google Scholar
  13. 6.
    Cockayne, B., Phil. Mag., 12, No. 119, 943–50 (1965).ADSCrossRefGoogle Scholar
  14. 7.
    Robertson, D. S., Brit. J. Appl. Phys., 17, 1047–1050 (1966).ADSCrossRefGoogle Scholar
  15. 8.
    Wilcox, W. R., and L. D. Fullmer, J. Appl. Phys., 36, No. 7, 2201–2206(1965).ADSCrossRefGoogle Scholar
  16. 9.
    Brice, J. C, and P. A. C. Whiffin, Brit. J. Appl. Phys., 18, 581–585 (1967).ADSCrossRefGoogle Scholar
  17. 10.
    Cockayne, B., and M. P. Gates, J. Material Sci., 2, 118–123 (1967).ADSCrossRefGoogle Scholar
  18. 11.
    Morizane, K., A. Witt, and H. C. Gatos, J. Electrochem. Soc.: Solid State Sci., 114, No. 7, 738–742 (1967).CrossRefGoogle Scholar
  19. 12.
    Burton, J. A., R. C. Prim, and W. P. Slichter, J. Chem. Phys., 21, No. 11, 1987–1991 (1953).ADSCrossRefGoogle Scholar
  20. 13.
    Burton, J. A., E. D. Kolb, W. P. Slichter, and J. D. Struthers, ibid., 1991–1996.Google Scholar
  21. 14.
    Geusic, J. E., H. M. Marcos, and L. G. Van Uitert, Appl. Phys. Lett., 4, No. 10, 182–184 (1964).ADSCrossRefGoogle Scholar
  22. 15.
    Levin, E. M., C. R. Robbins, and H. F. McMurdie, “Phase Diagrams for Ceramists,” Figures 311 and 312, The American Chemical Society, Inc., New York (1964).Google Scholar
  23. 16.
    Ibid., Fig. 309.Google Scholar
  24. 17.
    Dikhoff, J. A. M., Solid-State Electronics, 1, 202–210 (1960).ADSCrossRefGoogle Scholar
  25. 18.
    Dikhoff, J. A. M., Philips Tech. Rev., 25, No. 8, 195–206 (1963/64).Google Scholar
  26. 19.
    Fay, H., and C. D. Brandie, “Crystal Growth; Proceedings of an International Conference on Crystal Growth,” p. 51, Pergamon Press, New York (1967).Google Scholar
  27. 20.
    Geusic, J. E. , H. J. Levinstein, J. J. Rubin, S. Singh, and L. G. Van Uitert, Appl. Phys. Lett., 11, No. 9, 269 (1967).ADSCrossRefGoogle Scholar
  28. 21.
    LaBelle, H., Jr., and A. I. Mlavsky, Tech. Rept. AFML-TR-66–246 (Aug., 1966).Google Scholar
  29. 22.
    Faust, J. W., Jr., “Crystal Growth; Proceedings of an International Conference on Crystal Growth,” pp. 183–185, Pergamon Press, New York (1967).Google Scholar
  30. 23.
    Plooster, M. N., O. H. Nestor, J. C. Smith, and R. L. Hutcheson, paper presented at Annual Meeting of American Ceramic Society (May 4, 1965).Google Scholar
  31. 24.
    Alford, W. G., and W. H. Bauer, “Crystal Growth; Proceedings of an International Conference on Crystal Growth,” p. 71, Pergamon Press, New York (1967).Google Scholar

Copyright information

© Springer Science+Business Media New York 1969

Authors and Affiliations

  • Howard M. Dess
    • 1
  1. 1.Union Carbide CorporationSan DiegoCaliforniaUSA

Personalised recommendations