Advertisement

Infection pp 225-247 | Cite as

Virus-Induced Modulation of Reticuloendothelial Function

  • Steven Specter
Chapter
  • 54 Downloads

Abstract

The ability of viruses to modify the functions of cells of the lymphoreticular system has been extensively investigated and reviewed (Woodruff and Woodruff, 1975; Specter and Friedman, 1978; Nash, 1985; Friedman et al., 1986; Rouse and Horohov, 1986). Frequently this information is amassed in such a manner that the importance of the interactions of viruses and macrophages receives little attention. In the present chapter these interactions are the focus of the discussion and review. The exception to inclusion of viruses in this chapter are the RNA tumor viruses, which are dealt with in Chapter 13 in this volume.

Keywords

Dengue Virus Acquire Immune Deficiency Syndrome Vesicular Stomatitis Virus Infectious Bursal Disease Virus Macrophage Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aderka, D., Holtmann, H., Toker, L., Hahn, T., and Wallace, D., 1986, Tumor necrosis factor induction by Sendai virus, J. Immunol. 136:2938.PubMedGoogle Scholar
  2. Aiuti, F., Ciaria, M. V., D’Asero, C., D’Amelio, R., and Garofalo, J. A., 1973, Surface markers on lymphocytes of patients with infectious diseases, Infect. Immun. 8:110.PubMedGoogle Scholar
  3. Allison, A., 1967, Lysosomes in virus-infected cells, in: Perspectives in Virology, Volume V (V. M. Pollard, ed.), pp. 29–62, Academic Press, New York.Google Scholar
  4. Anderson, L. W., Klevjer-Anderson, P., and Liggitt, H. D., 1983, Susceptibility of blood derived monocytes and macrophages to caprine arthritis encephalitis virus, Infect. Immun. 41:837.PubMedGoogle Scholar
  5. Andiman, W. A., and Miller, G., 1982, Persistent infection with adenovirus types 5 and 6 in lymphoid cells from humans and woolly monkeys, J. Infect. Dis. 145:83.PubMedGoogle Scholar
  6. Appel, M. J. G., 1978, Reversion to virulence of attenuated canine distemper virus in vivo and in vitro, J. Gen. Virol. 41:385.Google Scholar
  7. Arneborn, P., and Biberfeld, G., 1983, T lymphocyte subpopulation in relation to immunosuppression in measles and varicella, Infect. Immun. 39:29.PubMedGoogle Scholar
  8. Avila, F. R., Schultz, R. M., and Tompkins, W. A. F., 1972, Specific macrophage immunity to vaccinia virus: Macrophage virus interaction, Infect. Immun. 6:9.PubMedGoogle Scholar
  9. Babiuk, L. A., Lawman, M. J. P., and Griebel, P. 1987, Immunosuppression by bovine herpesviruses and other selected herpesviruses, in: Viral Induced Immunosuppression (S. Specter, M. Bendinelli, and H. Friedman, eds.), Plenum Press, New York (in press).Google Scholar
  10. Bang, F. B., and Warwick, A., 1960, Mouse macrophages as host cells for the mouse hepatitis virus and the genetic basis of their susceptibility, Proc. Natl. Acad. Sci. USA 46:1065.PubMedGoogle Scholar
  11. Belardelli, F., Vigmaux, F., Proietti, E., and Gresser, I., 1984, Injection of mice with antibody to interferon renders peritoneal macrophages permissive for vesicular stomatitis virus and enceph-alomyocarditis virus, Proc. Natl. Acad. Sci. USA 81:602.PubMedGoogle Scholar
  12. Bendixen, P. H., Shewen, P. E., and Wilkie, B. N., 1981, The influence of bovine alveolar macrophages on the blastogenic response of peripheral blood mononuclear cells, in: The Ruminant Immune System (J. E. Butler, ed.), pp. 814–818, Plenum Press, New York.Google Scholar
  13. Berensci, K., Bakay, M., and Kovacs, P., 1982, Effect of human adenovirus type 6 on the primary immune response in mice, Acta Virol. 26:340.Google Scholar
  14. Berensci, K., Bakay, M., and Beladi, I., 1985, The role of macrophages in adenovirus-induced immunosuppression in mice, Acta Virol. 29:61.Google Scholar
  15. Borysiewicz, L. K., Casali, P., Rogers, B., Morris, S., and Sissons, J. G. P., 1985, The immunosuppressive effects of measles virus on T cell function-failure to affect IL-2 release of cytotoxic T cell activity in vitro, Clin. Exp. Immunol. 59:26.Google Scholar
  16. Brenan, M., and Zinkernagel, R. M., 1983, Influence of one virus infection on a second concurrent primary in .vivo antiviral cytotoxic T-cell response, Infect. Immun. 41:470.PubMedGoogle Scholar
  17. Bro-Jorgensen, K., 1978, The interplay between lymphocytic choriomeningitis virus, immune function and hemopoiesis in mice, Adv. Virol. Res. 22:327.Google Scholar
  18. Buchmeier, N. A., Gee, S. R., Murphy, F. A., and Rawls, W. E., 1979, Abortive replication of vaccinia virus in activated rabbit macrophages, Infect. Immun. 26:328.PubMedGoogle Scholar
  19. Buchmeier, M. J., Welsh, R. M., Dutko, F. J., and Oldstone, M. B. A., 1980, The virology and immunobiology of lymphocytic choriomeningitis virus infection, Adv. Immunol. 30:275.PubMedGoogle Scholar
  20. Buimovici-Klein, E., Lang, P. B., Ziring, P. R., and Cooper, L. Z., 1979, Impaired cell-mediated immune response in patients with congenital rubella: Correlation with gestational age at time of infection. Pediatrics 64:620.PubMedGoogle Scholar
  21. Burstein, S. J., Brandriss, M. W., and Schlesinger, J. J., 1983, Infection of a macrophage cell line, P388D1 with reo virus. Effects of immune ascitic fluids and monoclonal antibodies on the neutralization and on enhancement of viral growth, J. Immunol. 130:2915.Google Scholar
  22. Calnek, B. W., Fahey, K. J., and Bagust, T. J., 1986, In vitro infection studies with infectious laryngotracheitis virus, Avian Dis. 30:327.PubMedGoogle Scholar
  23. Carney, W. P., and Hirsch, M. S., 1981, Mechanisms of immunosuppression in cytomegalovirus mononucleosis. II. Virus-monocyte interactions, J. Infect. Dis. 144:47.PubMedGoogle Scholar
  24. Chantier, J. K., and Tingle, A. J., 1980, Replication and expression of rubella virus in human lymphocyte populations, J. Gen. Virol. 50:317.Google Scholar
  25. Chaturvedi, U. C., 1987, Toga virus induced immunosuppression, in: Viral Induced Immunosuppression (S. Specter, M. Bendinelli, and H. Friedman, eds.), Plenum Press, New York (in press).Google Scholar
  26. Chaturvedi, U. C., and Shukla, M. I., 1981, Characterization of the suppressor factor produced in the spleen of dengue virus-induced mice, Ann. Immunol. (Pasteur Inst.) 132C:245.Google Scholar
  27. Chaturvedi, U. C., Mathur, A., Tandon, P., Natu, S. M., Rajvanshi, S., and Tandon, H. O., 1979, Variable effect on peripheral blood leukocytes during J E virus infection of man, Clin. Exp.Immunol. 38:492.PubMedGoogle Scholar
  28. Chaturvedi, U. C., Shukla, M. I., and Mathur, A., 1981, Thymus dependent lymphocytes of the dengue virus-infected mice spleen mediate suppression through prostaglandins, Immunology 42:1.PubMedGoogle Scholar
  29. Chaturvedi, U. C., Gulati, L., and Mathur, A., 1982, Inhibition of E-rosette formation and phagocytosis by human blood leukocytes after treatment with the dengue virus-induced cytotoxic factor, Immunology 45:679.PubMedGoogle Scholar
  30. Chaturvedi, U. C., Nagar, R., Gulati, L., and Mathur, A., 1983a, Macrophage functions in dengue virus infection, in: Proc. Int. Conf. on Dengue/Dengue Haemorrhagic Fever, Kuala Lampur (T. Pang and R. Pathmanathan, eds.), pp. 343–354, University of Malaya, Kuala Lampur.Google Scholar
  31. Chaturvedi, U. C., Nagar, R., and Mathur, A., 1983b, Effect of dengue virus infection on Fc-receptor functions of mouse macrophages, J. Gen. Virol. 64:2399.PubMedGoogle Scholar
  32. Cohen, D. A., Morris, R. E., and Bubel, H. C., 1984, Abortive ectromelia virus infection in peritoneal macrophages activated by Corynebacterium parvum, J. Leukocyte Biol. 35:179.Google Scholar
  33. Cohen, P. L., Cross, S. S., and Mosier, D. E., 1975, Immunologic effects of neonatal infection with mouse thymic virus, J. Immunol. 115:706.PubMedGoogle Scholar
  34. Coignoul, F. L., Bertram, T. A., and Cheville, N. F., 1984, Functional and ultrastructural changes in neutrophils from mares and foals experimentally inoculated with a respiratory tract strain of equine herpesvirus-1, Am. J. Vet. Res. 45:1977.Google Scholar
  35. Cook, S. L., and Lewis, A. M., 1984, Differential NK and macrophage killing of hamster cells infected with non-oncogenic or oncogenic adenovirus, Science 224:612.PubMedGoogle Scholar
  36. Davis, G. L., Jicha, J. L., and Hoof nagle, J. H., 1984, Alpha and gamma interferon in patients with chronic type B, non-A non-B and delta hepatitis: Serum levels and in vitro production by lymphocytes, Gastroenterology 86:1315 (Abstract).Google Scholar
  37. Dinarello, C., 1984, Interleukin-1, Rev. Infect. Dis. 6:52.Google Scholar
  38. Domurat, F., Roberts, N. J., Jr., Walsh, E. E., and Dagan, R., 1985, Respiratory syncytial virus infection of human mononuclear leukocytes in vitro and in vivo, J. Infect. Dis. 152:895.Google Scholar
  39. Doyle, M. V., and Oldstone, M. B. A., 1978, Interactions between viruses and lymphocytes. I. In vivo replication of lymphocytic choriomeningitis virus in mononuclear cells during both acute and chronic viral infections, J. Immunol. 121:1262.PubMedGoogle Scholar
  40. Duc-Ngyuen, H., and Henle, W., 1966, Replication of measles virus in human leukocyte cultures, J. Bacteriol. 92:258.Google Scholar
  41. Dutta, S. K., Myrup, A., and Bumgardner, M. K., 1980, Lymphocyte responses to virus and mitogen in ponies during experimental infection with equine herpesvirus-1, Am J. Vet. Res. 41:2066.PubMedGoogle Scholar
  42. Einhorn, L., and Ost, A., 1984, Cytomegalovirus infection of human blood cells, J. Infect. Dis. 149:207.PubMedGoogle Scholar
  43. Ettensohn, D. B., and Roberts, N. J., Jr., 1984, Influenza virus infection of human alveolar and blood derived macrophages: Differences inaccessory cell function and interferon production, J. Infect.Dis. 149:942.PubMedGoogle Scholar
  44. Fleischer, B., and Kreth, H. W., 1982, Mumps virus replication in human lymphoid cell lines and in peripheral blood lymphocytes: Preference for T cells, Infect. Immun. 35:25.PubMedGoogle Scholar
  45. Forman, A. J., and Babiuk, L. A., 1982, Effect of infectious bovine rhinotracheitis virus infection on bovine alveolar macrophage function, Infect. Immun. 35:1041.PubMedGoogle Scholar
  46. Friedlander, A. M., Jährling, P. B., Merrill, P., and Tobery, S., 1984, Inhibition of mouse peritoneal macrophages. DNA synthesis by infection with the arenavirus Pichinde, Infect. Immun. 43:283.PubMedGoogle Scholar
  47. Friedman, H., Szentivanyi, A., Specter, S., and Bendinelli, M., 1986, Virus interactions with the immune defense system, in: Viruses, Immunity and Immunodeficiency (A. Szentivanyi and H. Friedman, eds.), pp. 25–39, Plenum Press, New York.Google Scholar
  48. Ganguly, R., Cusumano, C. L., and Waldman, R. H., 1976, Suppression of cell-mediated immunity after infection with attenuated rubella virus, Infect. Immun. 13:464.PubMedGoogle Scholar
  49. Gardner, I. D., and Lawton, J. W. M., 1982, Depressed human monocyte function after influenza infection in vitro, J. Reticuloendothel. Soc. 32:443.Google Scholar
  50. Gartner, S., Markovitz, P., Markovitz, D. M., Kaplan, M. H., Gallo, R. C., and Popovic, M., 1986, The role of mononuclear phagocytes in HTLV-III/LAV infection, Science 223:215.Google Scholar
  51. Garzelli, C., Basolo, F., Matteucci, D., Prabhakar, B. S., and Toniolo, A., 1987, Picornavirus induced immunosuppression, in: Viral Induced Immunosuppression (S. Specter, M. Bendinelli, and H. Friedman, eds.), Plenum Press, New York (in press).Google Scholar
  52. Gauntt, C. J., Trousdale, M. D., LaBodie, D. R. L., Paque, R. E., and Nealon T., 1979, Properties of coxsackievirus B3 variants which are amyocarditic or myocarditic for mice, J. Med. Virol. 3:207.PubMedGoogle Scholar
  53. Gledhill, A. W., Bilbey, D. L. J., and Niven, J. S. F., 1965, Effect of certain murine pathogens on phagocytic activity, Br. J. Pathol. 46:433.Google Scholar
  54. Gonzalez, P. H., Lampuri, J. S., Coto, C. E., and Laguens, R. P., 1982, In vitro infection of murine macrophages with Junin virus, Infect. Immun. 35:356.PubMedGoogle Scholar
  55. Gonzalez-Serva, A., and Hsiung, G. D., 1978, Expression of herpesvirus in adherent bone marrow of latently infected cells from guinea pigs, Am. J. Pathol. 9:483.Google Scholar
  56. Gresser, I., and Chany, C., 1964, Multiplication of poliovirus type I in preparations of human leukocytes and its inhibition by interferon, J. Immunol. 92:889.PubMedGoogle Scholar
  57. Gulati, L., Chaturvedi, U. C., and Mathur, A., 1982, Depressed macrophage functions in dengue virus infected mice: Role of the cytotoxic factor, Br. J. Exp. Pathol. 63:194.PubMedGoogle Scholar
  58. Gulati, L., Chaturvedi, U. C., and Mathur, A., 1983, Dengue virus-induced cytotoxic factor induces macrophages to produce a cytotoxin, Immunology 49:121.PubMedGoogle Scholar
  59. Gulati, L., Chaturvedi, U. C., and Mathur, A., 1984, Effect of dengue virus-induced macrophage cytotoxin on functions of human blood leukocytes, Indian J. Med. Res. 79:709.PubMedGoogle Scholar
  60. Gulati, L., Chaturvedi, U. C., and Mathur, A., 1986, Production of dengue virus-induced macrophage cytotoxin, Br. J. Exp. Pathol. 67:269.PubMedGoogle Scholar
  61. Halstead, S. B., O’Rourke, E. J., and Allison, A. C., 1977, Dengue viruses and mononuclear phagocytes. II. Identity of blood and tissue leukocytes supporting in vitro infection, J. Exp. Med. 146:218.PubMedGoogle Scholar
  62. Harfast, B., Huddlestone, J. R., Casali, P., Merigan, T., and Oldstone, M. B. A., 1981, Interferon acts directly on human B lymphocytes to modulate immunoglobulin synthesis, J. Immunol. 127:2146.PubMedGoogle Scholar
  63. Herman, G., DuBuy, H. G., and Johnson, M. L., 1966, Studies on the in vivo and in vitro multiplication of the LDH virus of mice, J. Exp. Med. 123:985.Google Scholar
  64. Inada, T., and Mims, C. A., 1984, Mouse la antigens are receptors for lactate dehydrogenase virus, Nature (London) 308:59.Google Scholar
  65. Inada, T., and Mims, C. A., 1985, la antigens and Fc receptors of mouse peritoneal macrophages as determinants of susceptibility to lactic dehydrogenase virus, J. Gen. Virol. 66:1469.PubMedGoogle Scholar
  66. Isakov, N., Feldman, M., and Segal, S., 1982a, Acute infection of mice with lactic dehydrogenase virus (LDV) impairs the antigen presenting capacity of their macrophages, Cell Immunol. 66: 317.PubMedGoogle Scholar
  67. Isakov, N., Feldman, M., and Segal, S., 1982b, Lactic dehydrogenase virus (LDV) impairs the antigen presenting capacity of macrophages yet fails to affect their phagocytic activity, Immu-nobiology 162:15.Google Scholar
  68. Jakowski, R. M., Fredrickson, T. N., Chomiak, T. W., and Luginbuhl, R. E., 1970, Hematopoietic destruction in Marek’s disease, Avian Dis. 14:374.PubMedGoogle Scholar
  69. Jacobs, R. P., and Cole, G. A., 1976, Lymphocytic choriomeningitis virus-induced immunosuppression: A virus-induced macrophage defect, J. Immunol 117:1004.PubMedGoogle Scholar
  70. Jakab, G. J., and Warr, G. A., 1981, Immune enhanced phagocytic dysfunction in pulmonary macrophages infected with parainfluenza 1 (Sendai) virus 1–3, Am. Rev. Respir. Dis. 124:575.PubMedGoogle Scholar
  71. Joseph, B. S., Lampert, P. W., and Oldstone, M. B. A., 1975, Replication and persistence of measles virus in defined subpopulations of human leukocytes, J. Virol. 16:1638.PubMedGoogle Scholar
  72. Junker, A., Ochs, H. D., Clark, E. A., Puterman, M. L., and Wedgewood, R. J., 1986, Transient immune deficiency in patients with acute Epstein-Barr virus infection, Clin. Immunol. Immunopathol. 40:436.PubMedGoogle Scholar
  73. Kadish, A. S., Tansey, F. A., Yu, G. S. M., Doyle, A. T., and Bloom, B. R., 1980, Interferon as a mediator of human lymphocyte suppression, J. Exp. Med. 151:637.PubMedGoogle Scholar
  74. Kahn, D. E., and Gillespie, J. H., 1971, Feline viruses: Pathogenesis of Picornavirus infection in the cat, Am. J. Vet. Res. 32:51.Google Scholar
  75. Kantoch, M., and Dobrowolska, H., 1969, Studies on the inheritance of the susceptibility to poliovirus of phytohemagglutinin transformed macrophages. Acta Virol. 13:153.PubMedGoogle Scholar
  76. Kleinerman, E. S., Snyderman, R., and Daniels, C. A., 1974, Depression of human monocyte Chemotaxis by herpes simplex and influenza viruses, J. Immunol. 113:1562.PubMedGoogle Scholar
  77. Kleinerman, E. S., Sydnerman, R., and Daniels, C. A., 1975, Depressed monocyte Chemotaxis during acute influenza infection, Lancet 2:1063.PubMedGoogle Scholar
  78. Kleinerman, E. S., Daniels, C. A., Polisson, R. P., and Synderman, R., 1976, Effect of virus infection on the inflammatory response: Depression of macrophage accumulation in influenza-infected mice, Am. J. Pathol. 85:373.PubMedGoogle Scholar
  79. Koenig, S., Gendelman, H. E., Orenstein, J. M., DalCanto, M. C., Pezeshkpour, G. H., Yungbluth, M., Janotta, F., Aksamit, A., Martin, M. A., and Fauci, A. S., 1986, Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy, Science 233: 1089.PubMedGoogle Scholar
  80. Kohl, S., Starr, S. E., Oleske, J., Shore, S. L., Ashman, R. B., and Nahmias, A. J., 1977, Human monocyte-macrophage-mediated antibody-dependent cytotoxicity to herpes simplex virus-infected cells, J. Immunol. 118:729.PubMedGoogle Scholar
  81. Korba, B. E., Wells, F., Tennat, B. C., Yoakum, G. H., Purcell, R. H., and Gerin, J. L., 1986, Hepadnavirus infection of peripheral blood lymphocytes in vivo: Woodchuck and chimpanzee models of viral hepatitis, J. Virol. 58:1.PubMedGoogle Scholar
  82. Kramp, W. J., Medveczky, P., Mulder, C., Hinze, H. C., and Sullivan, J. L., 1985, Herpes sylvilagus infects both B and T lymphocytes in vivo, J. Virol. 56:60.Google Scholar
  83. Krzystyniak, K., and Dupuy, J. M., 1983, Immunodepression of lymphocyte response in mouse hepatitis virus 3 infection, Biomed. Pharmacol. 37:68.Google Scholar
  84. Laguens, R. M., Avila, M. M., Samoilovich, S. R., Weissenbacher, M. C., and Laguens, R. P., 1983a, Pathogenicity of an attenuated strain (XJC13) of Junin virus. Morphological and virological studies in experimentally infected guinea pigs, Intervirology 20:195.PubMedGoogle Scholar
  85. Laguens, M., Chambo, J. G., and Laguens, R. P., 1983b, In vivo replication of pathogenic and attenuated strains of Junin virus in different cell populations of lymphatic tissue, Infect. Immun. 41:1279.PubMedGoogle Scholar
  86. Lee, L. F., Sharma, J. M., Nazerian, K., and Witter, R. L., 1978, Suppression and enhancement of mitogen induced proliferation of normal spleen cells by macrophages from chickens inoculated with Marek’s disease virus, J. Immunol. 120:1554.PubMedGoogle Scholar
  87. Leray, D., Dupuy, C., and Dupuy, J. M., 1982, Immunopathology of mouse hepatitis virus type 3 infection. IV. MHV-3 induced immunosuppression, Clin. Immunol. Immunopathol. 23:1457.Google Scholar
  88. Levy-LeBlond, E., Oth, D., and Dupuy, J. M., 1979, Genetic study of mouse sensitivity to MHV-3 infection: Influence of the H-2 complex, J. Immunol. 112:1359.Google Scholar
  89. Lopez, C., 1975, Genetics of natural resistance to herpesvirus infections in mice, Nature 258:152.PubMedGoogle Scholar
  90. Lopez, C., and Dudas, G., 1979, Replication of herpes simplex virus type 1 in macrophages from resistaiii and susceptible mice, Infect. Immun. 23:432.PubMedGoogle Scholar
  91. Mathiesen, L. R., Feinstone, S. M., Purcell, R. H., and Wagner, J. O., 1977, Detection of hepatitis A antigen by immunofluorescence, Infect. Immun. 18:524.PubMedGoogle Scholar
  92. Matteucci, D., Toniolo, A., Conaldi, P. G., Basolo, F., Gori, Z., and Bendinelli, M., 1985, Systemic lymphoid atrophy in coxsackievirus B3-infected mice: Effects of virus and immunopotentiating agents, J. Infect. Dis. 51:1100.Google Scholar
  93. McLaren, C., Cheng, H., Spicer, D. L., and Tompkins, W. A. F., 1976, Lymphocyte and macrophage responses after vaccinia virus infections, Infect. Immun. 14:1014.PubMedGoogle Scholar
  94. Mella, B., and Lang, D. J., 1967, Leukocyte mitosis: Suppression in vitro associated with acute infectious hepatitis, Science 155:80.PubMedGoogle Scholar
  95. Midulla, M., Businco, L., and Moschini, L., 1972, Some effects of rubella vaccination on immunologic responsiveness, Acta Paediatr. Scand. 61:609.PubMedGoogle Scholar
  96. Mims, C. A., 1964, Aspects of pathogenesis of virus diseases, Bacteriol. Rev. 28:30.PubMedGoogle Scholar
  97. Mims, C.A., and Wainwright, S., 1968, The immunodepressive action of lymphocytic choriomeningitis virus in mice, J. Immunol. 101:717.PubMedGoogle Scholar
  98. Mogensen, S. C., 1986, Macrophages and genetically determined natural resistance to virus infections, in: Viruses, Immunity and Immunodeficiency (A. Szentivanyi and H. Friedman, eds.), pp. 13–24, Plenum Press, New York.Google Scholar
  99. Morahan, P. S., and Morse, S. S., 1979, Macrophage-virus interactions, in: Virus-Lymphocyte Interactions: Implications for Disease (M. R. Proffitt, ed.), pp. 17–35, Elsevier/North Holland Publishing Co., New York.Google Scholar
  100. Morahan, P. S., Conner, J. R., and Leary, K. R., 1985, Viruses and the versatile macrophage, Br. Med. Bull. 41:15.PubMedGoogle Scholar
  101. Moss, B., 1985, Replication of poxviruses, in: Fundamental Virology (B. N. Fields, D. M. Knipe, R. M. Chanock, eds.), pp. 637–655, Raven Press, New York.Google Scholar
  102. Murphy, F. A., Winn, W., Walker, D. H., Flemister, M. R., and Whitfield, S. G., 1976, Early lymphoreticular viral tropism and antigen persistence. Tamiami virus infection in the cotton rat, Lab. Invest. 34:125.PubMedGoogle Scholar
  103. Murphy, F. A., Buchmeier, M. J., and Rawls, W. E., 1977, The reticuloendothelium as the target in a virus infection: Pichinde virus pathogenesis in two strains of hamsters, Lab. Invest. 37:502.PubMedGoogle Scholar
  104. Narayan, O., Wolinsky, J. S., Clements, J. E., Shandberg, J. D., Griffin, D. E., and Cork, L. C., 1982, Slow virus replication: The role of macrophages in the persistence and expression of visna viruses of sheep and goats, J. Gen. Virol. 59:345.PubMedGoogle Scholar
  105. Narayan, O., Kennedy-Stoskopf, S., Sheffer, D., Griffin, D. E., and Clements, J. E., 1983, Activation of caprine arthritis-encephalitis virus expression during maturation from monocytes to macrophages, Infect. Immun. 41:67.PubMedGoogle Scholar
  106. Narayan, O., Sheffer, D., Clements, J. E., and Tennekoon, G., 1985, Restricted replication of len-tiviruses: Visna viruses induce a unique interferon during interaction between lymphocytes and macrophages, J. Exp. Med. 162:1954.PubMedGoogle Scholar
  107. Nash, A. A., 1985, Tolerance and suppression in virus diseases, Br. Med. Bull. 41:41.PubMedGoogle Scholar
  108. Nath, P., Tandon, P., Gulati, L., and Chaturvedi, U. C., 1983, Histological and ultrastructural study of spleen during dengue virus infection of mice, Indian J. Med. Res. 77:83.Google Scholar
  109. Nick, S., Kampe, P., Knoblich, A., Metzger, B., and Falke, D., 1986, Suppression and enhancement of humoral antibody formation by herpes simplex virus types 1 and 2, J. Gen. Virol. 67:1015.PubMedGoogle Scholar
  110. Nugent, K. M., and Pesanti, E. L., 1979, Effect of influenza infection on the phagocytic and bactericidal activities of pulmonary macrophages, Infect. Immun. 26:651.PubMedGoogle Scholar
  111. Oguchi, M., Komura, J., Tagami, H., and Ofuji, S., 1981, Ultrastructural studies of spontaneously progressing plane warts. Macrophages attack verruca-epidermal cells, Arch. Dermatol. Res. 270:403.PubMedGoogle Scholar
  112. Oldstone, M. B. A., Tishon, A., Chiller, J. M., Weigle, W. O., and Dixon, F. J., 1973, Effect of chronic viral infection on the immune system. I. Comparison of the immune responsiveness of mice chronically infected with LCM virus with that of non-infected mice, J. Immunol. 110:1268.PubMedGoogle Scholar
  113. Porter, D. D., Porter, H. G., and Deerhale, B. B., 1968, Immunofluorescence assay for antigen and antibody in lactic dehydrogenase virus infection in mice, J. Immunol. 102:431.Google Scholar
  114. Portolani, M., Piani, M. Gazyenelli, G., Borgatti, A., Grossi, M. P., Corallini, A., and Barbanti-Brodano, G., 1985, Restricted replication of BK virus in human lymphocytes, Microbiologica 8:59.PubMedGoogle Scholar
  115. Rager-Zisman, B. R., and Allison, A. C., 1973, The role of anti body and host cells in the resistance of mice against infection by Coxsackie B-3 virus, J. Gen. Virol. 19:329.PubMedGoogle Scholar
  116. Rhodes, J., 1985, Modulation of macrophage Fe receptor expression in vitro by insulin and cyclic nucleotides, Nature 257:597.Google Scholar
  117. Rice, G. P. A., Schrier, R. D., and Oldstone, M. B. A., 1984, Cytomegalovirus infects human lymphocytes and monocytes: Virus expression is restricted to immediate-early gene products, Proc. Natl. Acad. Sci. USA 81:6134.PubMedGoogle Scholar
  118. Riley, V., 1974, Erroneous interpretation of valid experimental observations through interference by the LDH virus, J. Natl. Cancer Inst. 52:1673.PubMedGoogle Scholar
  119. Rinaldo, C. R., Jr., Black, P. H., and Hirsch, M. S., 1977, Interactions of cytomegalovirus with leukocytes from patients with mononucleosis due to cytomegalovirus, J. Infect. Dis. 136:667.PubMedGoogle Scholar
  120. Rinaldo, C. R., Jr., Carney, W. P., Richter, B. S., and Hirsch, M. S., 1980, Mechanisms of immunosuppression in cytomegaloviral mononucleosis, J. Infect. Dis. 141:488.PubMedGoogle Scholar
  121. Rinehart, J. J., Orser, M., and Kaplan, M. E., 1979, Human monocytes and macrophage modulation of lymphocyte proliferation, Cell Immunol. 44:131.PubMedGoogle Scholar
  122. Roberts, N. J., Jr., 1982, Direct effect of influenza virus respiratory syncytial virus and Sendai virus on human lymphocytes and macrophages, Infect. Immun. 35:142.Google Scholar
  123. Roberts, N. J., Jr., and Steigbigel, R. T., 1978, Effect of in vitro virus infection on response of human monocytes and lymphocytes to mitogen, J. Immunol. 121:1052.PubMedGoogle Scholar
  124. Roberts, N. J., Jr., Douglas, R. G., Jr., Simons, R. L., and Diamond, M. E., 1979, Virus-induced interferon production by human macrophages, J. Immunol. 123:365.PubMedGoogle Scholar
  125. Roberts, N. J., Jr., Diamond, M. E., Douglas, R. G., Jr., Simons, R. L., and Stiegbigel, R. T., 1980, Mitogen responses and interferon production after exposure of human macrophages to infectious and inactivated influenza viruses, J. Med. Virol. 5:17.PubMedGoogle Scholar
  126. Roberts, N. J., Jr., Prill, A. H., and Mann, T. N., 1986, Interleukin 1 and interleukin 1 inhibitor production by human macrophages exposed to influenza virus or respiratory syncytial virus: Respiratory syncytial virus is a potent inducer of inhibitory activity, J. Exp. Med. 163:511.PubMedGoogle Scholar
  127. Rodgers, B. C., Scott, D. M., Mundin, J., and Sissons, J. G. P., 1985, Monocyte derived inhibitor of interleukin 1 induced by human cytomegalovirus, J. Virol. 55:527.PubMedGoogle Scholar
  128. Rossiter, P. B., and Wardley, R. C., 1985, The differential growth of rinderpest virus in bovine lymphocytes and macrophages, J. Gen. Virol. 66:969.PubMedGoogle Scholar
  129. Rothwell, D. J., 1975, Bone marrow granulomas and infectious mononucleosis, Arch. Pathol. 99: 508.PubMedGoogle Scholar
  130. Rouse, B. T., and Horohov, D. W., 1986, Immunosuppression in viral infections, Rev. Infect. Dis. 8:850.PubMedGoogle Scholar
  131. Santivatr, D., Maheswaran, S. K., Newman, J. A., and Pomeroy, B. S., 1981, Effect of infectious bursal disease virus infection on the phagocytosis of Staphylococcus aureus by mononuclear phagocytic cells of susceptible and resistant strains of chickens, Avian Dis. 25:303.PubMedGoogle Scholar
  132. Schwartz, R., Lohler, J., and Lehmann-Grube, F., 1978, Infection of cultivated mouse peritoneal macrophages with lymphocytic chroiomeningitis virus, J. Gen. Virol. 39:565.PubMedGoogle Scholar
  133. Scott, J. C., Dutta, S. K., and Myrup, A. C., 1983, In vivo harboring of equine herpesvirus-1 in leukocytes, populations and subpopulations and their quantitation from experimentally infected ponies, Am. J. Vet. Res. 44:1344.PubMedGoogle Scholar
  134. Sharma, J. M., and Lee, L. F., 1983, Effect of infectious bursal disease on natural killer cell activity and mitogenic response of chicken lymphoid cells: Role of adherent cells in cellular immune suppression, Infect. Immun. 42:747.PubMedGoogle Scholar
  135. Shukla, M. I., and Chaturvedi, U. C., 1981, Cycloheximide and mitomycin C treatment inhibits production of dengue virus-induced suppressor factor, Indian J. Exp. Biol. 19:826.PubMedGoogle Scholar
  136. Shukla, M. I., and Chaturvedi, U. C., 1983, Transmission of dengue virus-induced suppressor signal from macrophage to lymphocyte occurs by cell contact, Br. J. Exp. Pathol. 64:87.PubMedGoogle Scholar
  137. Shukla, M. I., Dalakoti, H., and Chaturvedi, U. C., 1982, Ly phenotype of T lymphocytes producing dengue virus-induced immunosuppressive factors, Indian J. Exp. Biol. 20:525.PubMedGoogle Scholar
  138. Silverberg, B. A., Jakab, G. J., Thompson, R. G., Warr, G. A., and Boo, K. S., 1979, Ultrastructural alterations in phagocytic functions of alveolar macrophages after parainfluenza virus infection, J. Reticuloendothel. Soc. 25:405.PubMedGoogle Scholar
  139. Sivanandan, V., and Maheswaran, S. K., 1980, Immune profile of infectious bursal disease. I. Effect of infectious bursal disease virus on peripheral blood T and B lymphocytes of chickens, Avian Dis. 24:715.PubMedGoogle Scholar
  140. Smid, B., Valick, L., and Sabol, A., 1981, Morphogenesis of Aujesky’s disease virus in pig lung macrophages, Acta Vet. Vysoka Skola Veterinarni Brno, 50:79.Google Scholar
  141. Soontiens, F. J. C. J., and Van Der Veen, J., 1973, Evidence for a macrophage-mediated effect of poliovirus on the lymphocyte response to phytohemagglutinin, J. Immunol. 111:1411.PubMedGoogle Scholar
  142. Specter, S., and Friedman, H., 1978, Viruses and the immune response, Pharmac. Ther. A. 2:595.Google Scholar
  143. Stiehm, R. E., 1980, The human neonate as an immunocompromised host, in: Pathogenesis, Prevention and Therapy (J. Verhoef, P. K. Patterson, and P. G. Quie, eds.), pp. 77–91, Elsevier/North Holland Publishing Co., New York.Google Scholar
  144. Strayer, D. S., 1987, Poxviruses, in: Viral Induced Immunosuppression (S. Specter, M. Bendinelli, and H. Friedman, eds.), Plenum Press, New York (in press).Google Scholar
  145. Stueckemann, J. A., Ritzi, D. M., Holth, M., Smith, M. S., Swart, W. J., Cafruny, W. A., and Plagerman, P. G. W., 1982, Replication of lactate dehydrogenase virus in macrophages I. Evidence for cytocidal replication. J. Gen. Virol. 59:245.PubMedGoogle Scholar
  146. Sullivan, J. L., Barry, D. W., Lucas, S. J., and Albrecht, P., 1975, Measles infection of human mononuclear cells. I. Acute infection of peripheral blood lymphocytes and monocytes, J. Exp. Med. 142:773.PubMedGoogle Scholar
  147. Svennerholm, B., Strannegard, O., and Lycke, E., 1978, Immune reactivity of visna virus-inoculated mice, Infect. Immun. 20:412.PubMedGoogle Scholar
  148. Sy, M. S., and Finberg, R., 1987, Rhabdoviruses: Effect of vesicular stomatitis virus (VSV) infection on the development and regulation of cell mediated and humoral immune responses, in: Viral Induced Immunosuppression (S. Specter, M. Bendinelli, and H. Friedman, eds.), Plenum Press, New York (in press).Google Scholar
  149. Taguchi, F., Hirano, N., Kiuchi, Y., and Fujiwara, K., 1976, Difference in response to mouse hepatitis virus among susceptible mouse strains, Jpn. J. Microbiol. 20:293.PubMedGoogle Scholar
  150. Taguchi, F., Yamada, A., and Fujiwara, K., 1980, Resistance to highly virulent mouse hepatitis virus acquired by mice after low virulence infection: Enhanced antiviral activity of macrophages, Infect. Immun. 29:42.PubMedGoogle Scholar
  151. Taylor, C. F., Weiser, W. Y., and Bang, F. B., 1981, In vitro macrophage manifestation of cortisone-induced decrease in resistance to mouse hepatitis virus, J. Exp. Med. 153:732.PubMedGoogle Scholar
  152. Toniolo, A., Matteucci, D., Basolo, F., and Bendinelli, M., 1986, The immune system in experimental Coxsackie virus B3 infection, in: Viruses, Immunity and Immunodeficiency (A. Szentivanyi and H. Friedman, eds.), pp. 101–108, Plenum Press, New York.Google Scholar
  153. Tsuru, S., Kitani, H., Seno, M., Abe, M., Zinnaka, Y., and Nomoto, K., 1983, Mechanism of protection during the early phase of a generalized viral infection. I. Contribution of phagocytes to protection against ectromelia virus, J. Gen. Virol. 64:2021.PubMedGoogle Scholar
  154. Twomey, J. J., Gyorkey, F., and Norris, S. M., 1974, The monocyte disorder with herpes zoster, J. Exp. Clin. Med. 83:768.Google Scholar
  155. Van Der Logt, J. T. M., Van Loon, A. M., and Van Der Veen, J., 1980, Replication of rubella virus in human mononuclear blood cells, Infect. Immun. 27:309.PubMedGoogle Scholar
  156. Van Loon, A. M., Van Der Logt, J. T. M., and Van Der Veen, J., 1979, Poliovirus-induced suppression of lymphocyte-stimulation: A macrophage mediated effect, Immunology 37:135.PubMedGoogle Scholar
  157. Varesio, L., 1983, Suppressor cells and cancer: Inhibition of immune functions by macrophages, in: The Reticuloendothelial System: A Comprehensive Treatise, Volume 5, Cancer (R. B. Herberman and H. Friedman, eds.), pp. 217–252, Plenum Press, New York.Google Scholar
  158. Virelizier, J. L., Dayan, A. D., and Allison, A. C., 1975, Neuropathology effects of persistent infection of mice by mouse hepatitis virus, Infect. Immun. 12:1127.PubMedGoogle Scholar
  159. Warshauer, D., Goldstein, E., Akers, T., Lippert, W., and Kim, M., 1977, Effect of influenza viral infection on the ingestion and killing of bacteria by alveolar macrophages, Am. Rev. Respir. Dis. 115:269.PubMedGoogle Scholar
  160. Weiser, W., and Bang, F. B., 1976, Macrophages genetically resistant to mouse hepatitis virus concerted in vivro to susceptible macrophages, J. Exp. Med. 143:732.Google Scholar
  161. Weiser, W. Y., and Bang, F. B., 1977, Blocking of in vitro and in vitro susceptibility to mouse hepatitis virus, J. Exp. Med. 146:1467.PubMedGoogle Scholar
  162. Willlems, F. Th. C., Melnick, J. L., and Rawls, W. E., 1969, Viral inhibition of the phytohemag- glutinin response of human lymphocytes and application to viral hepatitis, Proc. Soc. Exp. Biol. Med. 130:652.Google Scholar
  163. Woodruff, J. F., and Woodruff, J. J., 1975, The effect of viral infections on the function of the immune system, in: Viral Immunology and Immunopathology (A. L. Notkins, ed.), pp. 393–418, Academic Press, New York.Google Scholar
  164. Yarborough, D. J., Meyer, O. T., Dannenberg, A. M., Jr., and Pearson, B., 1967, Histochemistry of macrophage hydrolases. III. Studies on ß-glucuronidase and aminopeptides with indoyl and naphthyl substrates, J. Reticuloendothel. Soc. 4:390.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Steven Specter
    • 1
  1. 1.Department of Medical Microbiology and ImmunologyUniversity of South Florida College of MedicineTampaUSA

Personalised recommendations