Advertisement

Transport in an Electron Waveguide

  • Gregory Timp
  • Robert E. Behringer
  • Eric H. Westerwick
  • Jack E. Cunningham
Part of the NATO ASI Series book series (NSSB, volume 254)

Abstract

An electron waveguide is a wire that is so clean and so small that electron waves can propagate coherently in guided modes, which are characteristic of the geometry, with minimal scattering. An electron waveguide is supposed to be reminiscent of an optical or microwave waveguide, but unlike an electromagnetic wave, an electron wave is sensitive to an applied electric or magnetic field because it possesses a charge. In response to an applied electric field (or to an applied current), an electron waveguide has a resistance which is related to the quantum mechanical transmission through the wire [1]. The transmission probability is affected by both elastic and inelastic scattering. Elastic scattering, such as might occur at an impurity for example, changes the distribution of the electrons between the modes of the guide, but it is phase deterministic; i.e. information associated with the phase of the electronic wave is not ruined by an elastic scattering event. In contrast, inelastic scattering destroys the phase memory in the wave. Coherent electronic transport is possible whenever the wire is smaller than the inelastic scattering length, whether or not there is elastic scattering [2]. Only when a device is smaller than both the inelastic and the elastic scattering lengths and comparable to the wavelength, like it is in an electron waveguide, is the modal distribution of the current important.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Landauer, in: Localization, Interaction, and Transport Phenomena, B. Kramer, G. Bergmann, and Y. Bruynseraede, eds., p. 38, Springer-Verlag, Heidelberg, New York (1985)CrossRefGoogle Scholar
  2. [2]
    S. Washburn and R.A. Webb, Adv. Phys. 35, 375 (1986)ADSCrossRefGoogle Scholar
  3. [3]
    Proc. Intl. Symp. on Nanostructure Physics and Fabrication, W.P. Kirk and M. Reed, eds., Academic Press, New York (1989)Google Scholar
  4. [4]
    C.W.J. Beenakker and H. van Houten, ‘Electronic Properties of Multilayers and Low-Dimensional Semiconductor Structures’, J.M. Chamberlain, L. Eaves, and J.C. Portal, eds., NATO Advanced Study Institute Series, Plenum, London (1990)Google Scholar
  5. [5]
    C.W.J. Beenakker and H. van Houten, Phys. Rev. Lett. 63, 1857 (1989)ADSCrossRefGoogle Scholar
  6. [6]
    Y. Aharonov and D. Böhm, Phys. Rev. 115, 485 (1959)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  7. [7]
    G. Timp, P.M. Mankiewich, P. de Vegvar, R. Behringer, J.E. Cunningham, R.E. Howard, H.U. Branger, and J.K. Jain, Phys. Rev. B 33, 6227 (1989)CrossRefGoogle Scholar
  8. [8]
    C.J.B. Ford, T.J. Thornton, R. Newbury, M. Pepper, H. Ahmed, D.C. Peacock, D.A. Ritchie, J.E.F. Frost, and G.A.C. Jones, Appl. Phys. Lett. 54, 21 (1989)ADSCrossRefGoogle Scholar
  9. [9]
    B.J. van Wees, L.P. Kouwenhoven, C.J.P.M. Harmans, J.G. Williamson, C.E.T. Timmering, M.E.I. Broekaart, C.T. Foxon, and J.J. Harris, Phys. Rev. Lett. 62, 2523 (1989)ADSCrossRefGoogle Scholar
  10. [10]
    B.J. van Wees, H. van Houten, C.W.J. Beenakker, J.G. Williamson, L.P. Kouwenhoven, D. van der Marel, and C.T. Foxon, Phys. Rev. Lett. 60, 848 (1988)ADSCrossRefGoogle Scholar
  11. [11]
    D.A. Wharam, T.J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J.E.F. Frost, D.G. Hasko, D.C. Peacock, D.A. Ritchie, and G.A.C. Jones, J. Phys. C 21, L209 (1988)ADSGoogle Scholar
  12. [12]
    G. Timp, R.E. Behringer, S. Sampere, J.E. Cunningham, and R. Howard, in: Proc. Intl. Symp. on Nanostructure Physics and Fabrication, W.P. Kirk and M. Reed, eds., p. 331, Academic Press, New York (1989)Google Scholar
  13. [13]
    M.L. Roukes, A. Scherer, S.J. Allen Jr., H.G. Craighead, R.M. Ruthen, E.D. Beebe, and J.P. Harbison, Phys. Rev. Lett. 59, 3011 (1987)ADSCrossRefGoogle Scholar
  14. [14]
    G. Timp, A.M. Chang, P. Mankiewich, R. Behringer, J.E. Cunningham, T.Y. Chang, and R.E. Howard, Phys. Rev. Lett. 59, 731 (1987)ADSCrossRefGoogle Scholar
  15. [15]
    P.M. Mankiewich, R.E. Behringer, R.E. Howard, A.M. Chang, T.Y. Chang, B. Chelluri, J.E. Cunningham, and G. Timp, J. Vac. Sci Technol. B 6, 131 (1988)CrossRefGoogle Scholar
  16. [16]
    A.M. Chang, G. Timp, T.Y. Chang, J.E. Cunningham, B. Chelluri, P.M. Mankiewich, R.E. Behringer, and R.E. Howard, Surf. Sc. 196, 46 (1988)ADSCrossRefGoogle Scholar
  17. [17]
    M. Büttiker, in: Proc. Intl. Symp. on Nanostructure Physics and Fabrication, W.P. Kirk and M. Reed, eds., p. 319, Academic Press, New York (1989); Phys.Rev. B 38, 9375 (1988)Google Scholar
  18. [18]
    G. Timp, A.M. Chang, P. de Vegvar, R.E. Howard, R. Behringer, J.E. Cunningham, and P. Mankiewich, Surf. Sc. 196, 68 (1988)ADSCrossRefGoogle Scholar
  19. [19]
    A.D. Stone, Phys. Rev. Lett. 54, 2692 (1985)ADSCrossRefGoogle Scholar
  20. [20]
    B.I. Halperin, Phys. Rev. B 25, 2185 (1980)CrossRefGoogle Scholar
  21. [21]
    J.K. Jain, Phys. Rev. Lett. 60, 2074 (1988)ADSCrossRefGoogle Scholar
  22. [22]
    K.F. Berggren, T.J. Thornton, D.J. Newson, and M. Pepper, Phys. Rev. Lett. 57, 1769 (1986)ADSCrossRefGoogle Scholar
  23. [23]
    G. Timp, ‘Seminconductors and Semimetals’, M.A. Reed, Vol. ed., Academic Press, New York (1990)Google Scholar
  24. [24]
    This solution is due to J.H. Davies, see [21]Google Scholar
  25. [25]
    A. Kumar, S.E. Laux, and F. Stern, Appl. Phys. Lett. 54, 1270 (1989)ADSCrossRefGoogle Scholar
  26. [26]
    Y. Imry, in: Physics of Mesoscopic Systems, Directions in Condensed Matter Physics, G. Grinstein and G. Mazenko, eds., p. 101, World Scientific Press, Singapore (1986)CrossRefGoogle Scholar
  27. [27]
    L.I. Glazman, G.B. Lesovick, D.E. Khmel’nitskii, and R.I. Shekhter, Pis’ma Zh. Eksp. Teor. Fiz. 48, 218 (1988) [JETP Lett. 48, 238 (1988)]Google Scholar
  28. [28]
    A. Szafer and A.D. Stone, Phys. Rev. Lett. 62, 300 (1989)ADSCrossRefGoogle Scholar
  29. [29]
    Y. Imry, in: Proc. Intl. Symp. on Nanostructure Physics and Fabrication, W.P. Kirk and M. Reed, eds., p. 379, Academic Press, New York (1989)Google Scholar
  30. [30]
    E.G. Haanappel and D. van der Marel, Phys. Rev. B 39, 5484 (1989);ADSCrossRefGoogle Scholar
  31. [30a]
    D. van der Marel and E.G. Haanappel, Phys. Rev. B 39, 77811 (1989);Google Scholar
  32. [30b]
    CS. Chu and R.S. Sorbello, Phys. Rev. B 40, 5941 (1989)ADSCrossRefGoogle Scholar
  33. [31]
    Significant parallel conduction was found in the magnetoresistance of this Hall barGoogle Scholar
  34. [32]
    J.H. Davies and J.A. Nixon, Phys. Rev. B 39, 3423 (1988)CrossRefGoogle Scholar
  35. [33]
    M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986);ADSCrossRefGoogle Scholar
  36. [33a]
    M. Büttiker, IBM J. Res. Develop. 32, 317 (1988)CrossRefGoogle Scholar
  37. [34]
    D.A. Wharam, M. Pepper, H. Ahmed, J.E.F. Frost, D.G. Hanko, D.C. Peacock, D.A. Ritchie, and G.A.C. Jones, J. Phys. C 21, L887 (1988)ADSGoogle Scholar
  38. [35]
    C.W.J. Beenakker and H. van Houten, Phys. Rev. B 39, 10445 (1989)CrossRefGoogle Scholar
  39. [36]
    H.U. Baranger and A.D. Stone, Phys. Rev. Lett. 63, 414 (1989)ADSCrossRefGoogle Scholar
  40. [37]
    H.U. Baranger and A.D. Stone, Phys. Rev. B 40, 8169 (1989)ADSCrossRefGoogle Scholar
  41. [38]
    The calculations were performed using a recursive Greens function method as in H.U. Baranger, A.D. Stone, and D.P. DiVincenzo, Phys. Rev. B 37, 6521 (1988)ADSCrossRefGoogle Scholar
  42. [39]
    Y. Avishai and Y. Band, Phys. Rev. Lett. 62, 2527 (1989)ADSCrossRefGoogle Scholar
  43. [40]
    H.U. Baranger and A.D. Stone, in: Science and Engineering of One- and Zero-Dimensional Semiconductors, S.P. Beaumont and C.M. Sotomajor Torres, eds., p. 121, Plenum, New York (1990)CrossRefGoogle Scholar
  44. [41]
    G. Kirczenow, Sol. St. Commun. 71, 469 (1989)ADSCrossRefGoogle Scholar
  45. [42]
    R. Behringer, G. Timp, H.U. Baranger, and J.E. Cunningham, unpublishedGoogle Scholar
  46. [43]
    F. Peeters, Phys. Rev. Lett. 61, 580 (1988)ADSCrossRefGoogle Scholar
  47. [44]
    G. Kirczenow, Phys. Rev. B 38, 10958 (1988)CrossRefGoogle Scholar
  48. [45]
    G. Kirczenow, Phys. Rev. Lett. 62, 2993 (1989)ADSCrossRefGoogle Scholar
  49. [46]
    D.G. Ravenhall, H.W. Wyld, and R.L. Schult, Phys. Rev. Lett. 62, 1780 (1989)ADSCrossRefGoogle Scholar
  50. [47]
    H. Akera and T. Ando, Phys. Rev. B 39, 5508 (1989)ADSCrossRefMathSciNetGoogle Scholar
  51. [48]
    H.U. Baranger, private communicationGoogle Scholar
  52. [49]
    C.J.B. Ford, T.J. Thornton, R. Newbury, M. Pepper, H. Ahmed, D.C. Peacock, D.A. Ritchie, J.E.F. Frost, and G.A. Jones, Phys. Rev. B 38, 8518 (1988)ADSCrossRefGoogle Scholar
  53. [50]
    C.J.B. Ford, S. Washburn, M. Büttiker, CM. Knoedler, and J.M. Hong, Phys. Rev. Lett. 62, 2724 (1989)ADSCrossRefGoogle Scholar
  54. [51]
    A.M. Chang, T.Y. Chang, and H.U. Baranger, Phys. Rev. Lett. 63, 996 (1989)ADSCrossRefGoogle Scholar
  55. [52]
    A.M. Chang, G. Timp, J.E. Cunningham, P.M. Mankiewich, R.E. Behringer, and R.E. Howard, Sol. St. Commun. 76, 769 (1988)CrossRefGoogle Scholar
  56. [53]
    M.A. Reed, J.N. Randall, R.J. Aggarwal, R.J. Matyi, T.M. Moore, and A.E. Wet sel, Phys. Rev. Lett. 60, 535 (1988)ADSCrossRefGoogle Scholar
  57. [54]
    A.B. Fowler, G.L. Timp. J.J. Wainer, and R.A. Webb, Phys. Rev. Lett. 57, 128 (1986)ADSGoogle Scholar
  58. [55]
    CG. Smith, M. Pepper, H. Ahmed, J.E. Frost, D.G. Hasko, D.C. Peacock, D.A. Ritchie, and G.A.C. Jones, J. Phys. C 21, L893 (1989)CrossRefGoogle Scholar
  59. [56]
    J.H.F. Scott-Thomas, S.B. Field, M.A. Kastner, H.L Smith, and D.A. Antoniadis, Phys. Rev. Lett. 62, 583 (1989)ADSCrossRefGoogle Scholar
  60. [57]
    U. Meirav, M.A. Kastner, M. Heiblum, and S.J. Wind. Phys. Rev. B 40, 5871 (1989)ADSCrossRefGoogle Scholar
  61. [58]
    R.H. Silsbee and R.C. Ashoori, comment subm. to Phys. Rev. Lett.Google Scholar
  62. [59]
    S. Washburn, A.B. Fowler, H. Schmid, and D. Kern, Phys. Rev. B 38, 1554 (1988)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Gregory Timp
    • 1
  • Robert E. Behringer
    • 1
  • Eric H. Westerwick
    • 1
  • Jack E. Cunningham
    • 1
  1. 1.AT&T Bell Laboratories HolmdelUSA

Personalised recommendations