Advertisement

Spin-Orbit Effects in Disordered Systems

  • Yigal Meir
  • Yuval Gefen
  • Ora Entin-Wohlmann
Part of the NATO ASI Series book series (NSSB, volume 254)

Abstract

When Dirac equation is expanded to second order in v/c, one finds various relativistic corrections to the Hamiltonian. One of these terms, Vso, is of the form
$$ {V_{so}} = \frac{\hbar }{{2{m^2}{c^2}}}\sigma\cdot \left( {\nabla V \times \left( {p - eA/c} \right)} \right) $$
(1)
where ℏσ is the electrons’s spin, p its momentum, V is the scalar potential and A the vector potential. The contribution of eA/c to the momentum can be neglected for most values of magnetic fields. For a spherically symmetric potential, V so takes the form
$$ {V_{so}} = \frac{\hbar }{{2{m^2}{c^2}}}\frac{1}{r}\frac{{\partial V}}{{\partial r}}\sigma\cdot L $$
(2)
where L = r × p is the angular momentum operator. Thus, this term is coined spin-orbit interaction.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L.D. Landau and E.M. Lifshitz, Quantum Mechanics, p. 266, Pergamon, Oxford (1977)Google Scholar
  2. [2]
    Y. Gefen, Y. Imry, and M.Ya. Azbel, Phys. Rev. Lett. 52, 129 (1984)ADSCrossRefGoogle Scholar
  3. [3]
    B.L. Al’tshuler, A.G. Aronov, and B.Z. Spivak, Pis. Zh. Eksp. Teor. Fiz. 33, 101 (1981) [JETP Lett. 33, 94 (1981)];Google Scholar
  4. [3a]
    D. Yu. Sharvin and Yu. V. Sharvin, Pis. Zh. Eksp. Teor. Fiz. 34, 285 (1981) [JETP Lett. 34, 272 (1981)]Google Scholar
  5. [4]
    Y. Gefen, unpublished (1984); M. Murat, Y. Gefen and Y. Imry, Phys. Rev. B 34, 659 (1986);Google Scholar
  6. [4a]
    A.D. Stone and Y. Imry, Phys. Rev. Lett. 56, 189 (1986)ADSCrossRefGoogle Scholar
  7. [5]
    For review see S. Washburn and R.A. Webb, Adv. Phys. 35, 395 (1986)ADSCrossRefGoogle Scholar
  8. [6]
    S. Hikami, A.I. Larkin, and Y. Nagaoka, Prog. Theor. Phys. 63, 707 (1980)ADSCrossRefGoogle Scholar
  9. [7]
    B.L. Al’tshuler and B.I. Shklovskii, Zh. Eksp. Teor. Fiz. 91, 220 (1986) [Sov. Phys. JETP 64, 127 (1986)];Google Scholar
  10. [7a]
    P.A. Lee, A.D. Stone, and H. Fukuyama, Phys. Rev. B 35, 1039 (1987);ADSCrossRefGoogle Scholar
  11. [7b]
    S. Feng, Phys. Rev. B 39, 8722 (1989)ADSCrossRefGoogle Scholar
  12. [8]
    G. Bergmann, Sol. St. Commun. 42, 815 (1982)ADSCrossRefGoogle Scholar
  13. [9]
    S. Chakravarty and A. Schmid, Phys. Rep. 140, 195 (1986)ADSCrossRefGoogle Scholar
  14. [10]
    N. Zanon and J.L. Pichard, J. Phys. (Paris) 49, 907 (1988)CrossRefMathSciNetGoogle Scholar
  15. [11]
    G. Bergmann, Phys. Rev. 107, 1 (1984)Google Scholar
  16. [12]
    Y. Meir, Y. Gefen, and O. Entin-Wohlmann, Phys. Rev. Lett. 63, 798 (1989)ADSCrossRefGoogle Scholar
  17. [13]
    J. Friedel, P. Lenglart, and G. Léman, J. Phys. Chem. Sol. 25, 781 (1964)ADSCrossRefGoogle Scholar
  18. [14]
    R.P. Feynmann, R.B. Leighton, and M. Sands, The Feynmann Lectures on Physics, III, Addison-Wesley Reading (1966)Google Scholar
  19. [15]
    see e.g. G. Timp, A.M. Chang, P. Markiewich, R. Behringer, J.E. Cunningham, T.Y. Chang, and R.E. Howard, Phys. Rev. Lett. 59, 732 (1987);ADSCrossRefGoogle Scholar
  20. [15a]
    M.L. Roukes, A. Scherer, S.J. Allen Jr., H.G. Craighead, R.M. Ruthen, E.D. Beebe, and J.P. Harbison, Phys. Rev. Lett. 59, 3011 (1987)ADSCrossRefGoogle Scholar
  21. [16]
    O. Millo, S.J. Klepper, M.W. Keller, D.E: Prober, S. Xiong, and A.D. Stone, preprintGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Yigal Meir
    • 1
  • Yuval Gefen
    • 1
    • 2
  • Ora Entin-Wohlmann
    • 1
    • 3
  1. 1.Dept. of PhysicsM.I.T.CambridgeUSA
  2. 2.Dept. of Nuclear PhysicsWeizmann InstituteRehovotIsrael
  3. 3.School of Physics and AstronomyTel Aviv UniversityTel AvivIsrael

Personalised recommendations