Advertisement

Dynamical Localization, Dissipation, and Repeated Measurements

  • Robert Graham
Part of the NATO ASI Series book series (NSSB, volume 254)

Abstract

The study of the quantum signatures of classical chaos [1–3] has brought to light a number of new quantum effects, which may be combined under the label “dynamical localization”. It has been seen in the excitation and (or) ionization of Rydberg atoms in a strong microwave field [4–6], however the phenomenon is more general and there is a whole class of such experiments, some of them already performed, others that may be conceived, which can be fruitfully considered from a common point of view: (i) one is dealing with quantum systems somewhere near the border between the quantum and the classical regime, which are (ii) driven by a periodic external electromagnetic field of a frequency larger compared to a neighboring level spacing, and of an intensity big enough to indirectly couple many unperturbed levels via multi-photon processes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Casati and L. Molinari, Suppl. to Progress in Theoretical Physics, to appearGoogle Scholar
  2. [2]
    B. Eckhardt, Phys. Rep. 163, 205 (1988)ADSCrossRefMathSciNetGoogle Scholar
  3. [3]
    F. Haake, ‘Quantum Signatures of Chaos’, Springer-Verlag, Berlin (1990)Google Scholar
  4. [4]
    E.J. Galvez, B.E. Sauer, L. Moorman, P.M. Koch, and D. Richards, Phys. Rev. Lett. 61, 2011 (1988)ADSCrossRefGoogle Scholar
  5. [5]
    J.E. Bayfield and D.W. Sokol, Phys. Rev. Lett. 61, 2007 (1988);ADSCrossRefGoogle Scholar
  6. [5a]
    J.E. Bayfield, G. Casati, I. Guarneri, and D.W. Sokol, Phys. Rev. Lett. 63, 364 (1989)ADSCrossRefGoogle Scholar
  7. [6]
    R. Blümel, R. Graham, L. Sirko, U. Smilansky, H. Walther, and K. Yamada, Phys. Rev. Lett. 62, 341 (1989)ADSCrossRefGoogle Scholar
  8. [7]
    R.V. Ambartsumyan, Y.A. Gorokhov, V.S. Letokov, and G.N. Makarov, Sov. Phys. JETP 42, 993 (1976)ADSGoogle Scholar
  9. [8]
    J.M. Martinis, M.H. Devoret, and J. Clarke, Phys. Rev. Lett. 55, 1543 (1985)ADSCrossRefGoogle Scholar
  10. [9]
    W. Washburn and R.A. Webb, Adv. in Phys. 35, 375 (1986)ADSCrossRefGoogle Scholar
  11. [10]
    W. Nagourney, J. Sandberg, and H.G. Dehmelt, Phys. Rev. Lett. 56, 2797 (1986);ADSCrossRefGoogle Scholar
  12. [10a]
    Th. Sauter, R. Blatt, W. Neuhauser, and P.E. Toschek, Phys. Rev. 57, 1696 (1986);ADSGoogle Scholar
  13. [10b]
    F. Diedrich, E. Peik, J.M. Chen, W. Quint, and H. Walther, Phys. Rev. Lett. 59, 2931 (1987)ADSCrossRefGoogle Scholar
  14. [11]
    D. Meschede, H. Walther, and G. Müller, Phys. Rev. Lett. 54, 551 (1985)ADSCrossRefGoogle Scholar
  15. [12]
    B.V. Chirikov, Phys. Rep. 52, 263 (1979)ADSCrossRefMathSciNetGoogle Scholar
  16. [13]
    A.J. Lichtenberg and M.A. Lieberman, ‘Regular and Stochastic Motion’, Springer-Verlag, Berlin (1983)CrossRefGoogle Scholar
  17. [14]
    B.V. Chirikov, F.M. Izrailev, and D.L. Shepelyansky, Sov. Sc. Rev. C2, 209 (1981)zbMATHMathSciNetGoogle Scholar
  18. [15]
    G. Casati, B.V. Chirikov, F.M. Izrailev, and J. Ford, Lecture Notes in Phys. 93, 334 (1979)ADSCrossRefMathSciNetGoogle Scholar
  19. [16]
    S. Fishman, D.R. Grempel, and R.E. Prange, Phys. Rev. Lett. 49, 509 (1982);ADSCrossRefMathSciNetGoogle Scholar
  20. [16a]
    S. Fishman, D.R. Grempel, and R.E. Prange, Phys. Rev. A29, 1639 (1984)CrossRefGoogle Scholar
  21. [17]
    D.L. Shepelyansky, Phys. Rev. Lett. 56, 677 (1986)ADSCrossRefMathSciNetGoogle Scholar
  22. [18]
    R.S. MacKay, J.D. Meiss, and I.C. Percival, Physica 13D, 55 (1984)zbMATHMathSciNetGoogle Scholar
  23. [19]
    R.S. MacKay and J.D. Meiss, Phys. Rev. A37, 4702 (1988)ADSCrossRefGoogle Scholar
  24. [20]
    T. Geisel, G. Radons, and J. Rubner, Phys. Rev. Lett. 57, 2883 (1986);ADSCrossRefGoogle Scholar
  25. [20a]
    R.C. Brown and R.E. Wyatt, Phys. Rev. Lett. 57, 1 (1986)ADSCrossRefMathSciNetGoogle Scholar
  26. [21]
    E.J. Heller, Phys. Rev. Lett. 53, 1515 (1984)ADSCrossRefMathSciNetGoogle Scholar
  27. [22]
    R.V. Jensen, M.M. Sanders, M. Saraceno, and B. Sundaram, Phys. Rev. Lett. 63, 2771 (1989)ADSCrossRefGoogle Scholar
  28. [23]
    M.C. Gutzwiller, J. Math. Phys. 12, 343 (1971);ADSCrossRefGoogle Scholar
  29. [23a]
    M.V. Berry, Proc. Roy. Soc. A423, 219 (1989);ADSCrossRefGoogle Scholar
  30. [23b]
    E.B. Bogomolny, Physica 31D, 169 (1988)zbMATHMathSciNetGoogle Scholar
  31. [24]
    R. Graham and M. Höhnerbach, Phys. Rev. Lett. 64, 637 (1990); to be publishedADSCrossRefGoogle Scholar
  32. [25]
    G. Casati, B.V. Chirikov, I. Guarneri, and D.L. Shepelyansky, Phys. Rep. 154, 77 (1987);ADSCrossRefGoogle Scholar
  33. [25a]
    G. Casati, I. Guarneri, and D.L. Shepelyansky, IEEE J. Quantum Electronics 24, 1420 (1988)ADSCrossRefGoogle Scholar
  34. [26]
    N. Bubner and R. Graham, to be publishedGoogle Scholar
  35. [27]
    R. Graham, M. Schlautmann, and D.L. Shepelyansky, to be published; R. Graham and J. Keymer, to be publishedGoogle Scholar
  36. [28]
    J.D. Hanson, E. Ott, and M. Antonsen, Phys. Rev. A29, 1819 (1984);CrossRefMathSciNetGoogle Scholar
  37. [28a]
    S. Adachi, M. Toda, and K. Ikeda, Phys. Rev. Lett. 61, 659 (1988)ADSCrossRefGoogle Scholar
  38. [29]
    R. Graham, Z. Phys. B59, 75 (1985)CrossRefMathSciNetGoogle Scholar
  39. [29a]
    R. Graham, Z. Phys. B 59, 75 (1985);CrossRefMathSciNetGoogle Scholar
  40. [29a]
    R. Graham, S. Isermann, and T. Tel, Z. Phys. B71, 237 (1988)CrossRefMathSciNetGoogle Scholar
  41. [30]
    T. Dittrich and R. Graham, Z. Phys. B62, 515 (1986);CrossRefMathSciNetGoogle Scholar
  42. [30a]
    T. Dittrich and R. Graham, Europhys. Lett. 4, 263 (1987); 7, 287 (1988);ADSCrossRefGoogle Scholar
  43. [30b]
    T. Dittrich and R. Graham, Ann. Phys. (N.Y.), to appearGoogle Scholar
  44. [31]
    T. Dittrich and R. Graham, in: Instabilities and Nonequilibrium Structures II, E. Tirapegui and D. Villarroel, eds., 145, Kluewer, Dordrecht (1989); Europhys. Lett. 11, 589 (1990); to be publishedADSCrossRefGoogle Scholar
  45. [32]
    M. Biittiker, Y. Imry, and R. Landauer, Phys. Lett. 96 A, 365 (1983);CrossRefGoogle Scholar
  46. [32a]
    R. Landauer and M. Biittiker, Phys. Rev. Lett. 54, 2049 (1985);ADSCrossRefGoogle Scholar
  47. [32b]
    R. Landauer, Phys. Rev. B33, 6497 (1986)ADSCrossRefGoogle Scholar
  48. [33]
    M.D. Srinivas and E.B. Davies, Opt. Acta 28, 981 (1981)ADSCrossRefMathSciNetGoogle Scholar
  49. [34]
    R. Graham and R. Hübner, to be publishedGoogle Scholar
  50. [35]
    Y. Gefen and D.J. Thouless, Phys. Rev. Lett. 59, 1752 (1987);ADSCrossRefGoogle Scholar
  51. [35a]
    G. Blatter and D.A. Brownse, Phys. Rev. B37, 3856 (1988)ADSCrossRefGoogle Scholar
  52. [36]
    A. Buchleitner, ‘Chaos bei Rydberg-Atomen’, Diplomarbeit, Ludwig-Maximilians-Universität, München (1989);Google Scholar
  53. [36a]
    R. Blümel, A. Buchleitner, R. Graham, L. Sirko, U. Smilansky, and H. Walther, to be publishedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Robert Graham
    • 1
  1. 1.Fachbereich PhysikUniversität Essen GHSEssenF. R. Germany

Personalised recommendations