Conductance Oscillations and Phase Coherence in Submicron Metal Films

  • Chris Van Haesendonck
  • Hans Vloeberghs
  • Yvan Bruynseraede
Part of the NATO ASI Series book series (NSSB, volume 254)


Neglecting band structure and correlation effects, the freely moving electrons in a disordered metal film can be described as plane waves ψ(F) oc exp \(\Psi \left( {\vec r} \right)\; \propto \exp \left( {i\vec k\cdot \vec r} \right)with\left| {\vec k} \right| = 2\pi /\lambda \) with |λ| = 2 π/λ the wave vector. When we restrict ourselves to the low temperature limit, the contribution of the inelastic scattering (at other electrons or phonons) to the electrical conductivity can be neglected. The scattering at lattice defects and impurities will cause an elastic diffusion of the charge carriers. Due to the Pauli principle, only the electrons near the Fermi level contribute to the conductivity which is given by the Einstein relation
$$</m:math> {\sigma _o} = {e^2}N\left( {{E_F}} \right)D $$
N(E F) represents the electronic density of states near the Fermi level and \( D = \frac{1}{3}{v_F}{\ell _{e\ell }} \) is the diffusion constant with v F the intrinsic electron (Fermi) velocity and 𝓁 e the elastic mean free path. The diffusion approach will be valid only for the electronic transport in disordered metals and on a length scale L much larger than the mean free path 𝓁 e (diffusive regime). On a length scale L𝓁 e, we enter the ballistic regime. The ballistic limit which can be studied in high-quality GaAs/GaAlAs heterostructures, is discussed in detail in other chapters of this volume.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B.L. Altshuler, JETP Lett. 41, 648 (1985);ADSGoogle Scholar
  2. [1a]
    B.L. Altshuler and B.Z. Spivak, JETP Lett. 42, 447 (1986)ADSGoogle Scholar
  3. [2]
    P.A. Lee and A.D. Stone, Phys. Rev. Lett. 55, 1622 (1985);ADSCrossRefGoogle Scholar
  4. [2a]
    P.A. Lee, A.D. Stone, and H. Fukuyama, Phys. Rev. B 35, 1039 (1987)ADSCrossRefGoogle Scholar
  5. [3]
    G. Bergmann, Phys. Rep. 107, 1 (1984)ADSCrossRefGoogle Scholar
  6. [4]
    S. Feng, P.A. Lee, and A.D. Stone, Phys. Rev. Lett. 56, 1960 (1986); 56, 2772(E) (1986)ADSCrossRefGoogle Scholar
  7. [5]
    N.O. Birge, B. Golding, W.H. Haemmerle, H.S. Chen, and J.M. Parsey, Jr., Phys. Rev. B 36, 7685 (1987)ADSCrossRefGoogle Scholar
  8. [6]
    K.S. Ralls, W.J. Skocpol, L.D. Jackel, R.E. Howard, L.A. Fetter, R.W. Epworth, and D.M. Tennant, Phys. Rev. Lett. 52, 228 (1984)ADSCrossRefGoogle Scholar
  9. [7]
    T.L. Meisenheimer and N. Giordano, Phys. Rev. B 39, 9929 (1989)ADSCrossRefGoogle Scholar
  10. [8]
    N.O. Birge, B. Golding, and W.H. Haemmerle, Phys. Rev. Lett. 62, 195 (1989)ADSCrossRefGoogle Scholar
  11. [9]
    Y. Aharonov and D. Böhm, Phys. Rev. 115, 485 (1959)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  12. [10]
    A. Tonomura, N. Osakabe, T. Matsuda, T. Kawasaki, J. Endo, S. Yano and H. Ya-mada, Phys. Rev. Lett. 56, 792 (1986)ADSCrossRefGoogle Scholar
  13. [11]
    Y. Gefen, Y. Imry, and M.Ya. Azbel, Phys. Rev. Lett. 52, 129 (1984)ADSCrossRefGoogle Scholar
  14. [12]
    R. Landauer, IBM J. Res. Dev. 1, 223 (1957)CrossRefMathSciNetGoogle Scholar
  15. [13]
    M. Büttiker, Y. Imry, and M.Ya. Azbel, Phys. Rev. A 30, 1982 (1984)CrossRefGoogle Scholar
  16. [14]
    C.P. Umbach, S. Washburn, R.B. Laibowitz, and R.A. Webb, Phys. Rev. B 30, 4048 (1984);ADSCrossRefGoogle Scholar
  17. [14a]
    G. Blonder, Bull. Am. Phys. Soc. 29, 535 (1984)Google Scholar
  18. [15]
    A.D. Stone, Phys. Rev. Lett. 54, 2692 (1985)ADSCrossRefGoogle Scholar
  19. [16]
    R.A. Webb, S. Washburn, C.P. Umbach, and R.B. Laibowitz, Phys. Rev. Lett. 54, 2696 (1985)ADSCrossRefGoogle Scholar
  20. [17]
    V. Chandrasekhar, M.J. Rooks, S. Wind, and D.E. Prober, Phys. Rev. Lett. 55, 1610 (1985)ADSCrossRefGoogle Scholar
  21. [18]
    C.P. Umbach, C. Van Haesendonck, R.B. Laibowitz, S. Washburn, and R.A. Webb, Phys. Rev. Lett. 56, 386 (1986)ADSCrossRefGoogle Scholar
  22. [19]
    G. Timp, A.M. Chang, J.E. Cunningham, T.Y. Chang, P. Mankiewich, R. Behringer, and R.E. Howard, Phys. Rev. Lett. 58, 2814 (1987)ADSCrossRefGoogle Scholar
  23. [20]
    A.D. Stone and Y. Imry, Phys. Rev. Lett. 56, 189 (1986)ADSCrossRefGoogle Scholar
  24. [21]
    S. Washburn, C.P. Umbach, R.B. Laibowitz, and R.A. Webb, Phys. Rev. B 32, 4789 (1985)ADSCrossRefGoogle Scholar
  25. [22]
    W.J. Skocpol, P.M. Mankiewich, R.E. Howard, L.D. Jackel, D.M. Tennant, and A.D. Stone, Phys. Rev. Lett. 56, 2865 (1986)ADSCrossRefGoogle Scholar
  26. [23]
    A.D. Benoit, S. Washburn, C.P. Umbach, R.B. Laibowitz, and R.A. Webb, Phys. Rev. Lett. 57, 1765 (1986)ADSCrossRefGoogle Scholar
  27. [24]
    B.L. Altshuler, A.G. Aronov, and B.Z. Spivak, JETP Lett. 33, 94 (1981)ADSGoogle Scholar
  28. [25]
    H. Fukuyama, in: Localization, Interaction, and Transport Phenomena, B. Kramer, G. Bergmann, and Y. Bruynseraede, eds., 51, Springer-Verlag, Berlin (1985)CrossRefGoogle Scholar
  29. [26]
    D.Yu. Sharvin and Yu.V. Sharvin, JETP Lett. 34, 272 (1981)ADSGoogle Scholar
  30. [27]
    M. Gijs, C. Van Haesendonck, and Y. Bruynseraede, Phys. Rev. Lett. 52, 2069 (1984)ADSCrossRefGoogle Scholar
  31. [28]
    S. Hikami, A.I. Larkin, and Y. Nagaoka, Prog. Theor. Phys. 63, 707 (1980)ADSCrossRefGoogle Scholar
  32. [29]
    R. Meservey and P.M. Tedrow, Phys. Rev. Lett. 41, 805 (1978)ADSCrossRefGoogle Scholar
  33. [30]
    S. Feng, Phys. Rev. B 39, 8722 (1989)ADSCrossRefGoogle Scholar
  34. [31]
    S. Maekawa, Y. Isawa, and H. Ebisawa, J. Phys. Soc. Jpn. 56, 25 (1987);ADSCrossRefGoogle Scholar
  35. [31a]
    M. Büttiker, Phys. Rev. B 35, 4123 (1987);CrossRefGoogle Scholar
  36. [31b]
    H.U. Baranger, A.D. Stone, and D.P. Di-Vincenzo, Phys. Rev. B 37, 6521 (1988)ADSCrossRefGoogle Scholar
  37. [32]
    B. Douçot and R. Rammal, Phys. Rev. Lett. 55, 1148 (1985);ADSCrossRefGoogle Scholar
  38. [32a]
    V. Chandrasekhar, D.E. Prober, and P. Santhanam, Phys. Rev. Lett. 61, 2253 (1988);ADSCrossRefGoogle Scholar
  39. [32b]
    P. Santhanam, Phys. Rev. B 39, 2541 (1989)ADSCrossRefGoogle Scholar
  40. [33]
    C.P. Umbach, P. Santhanam, C. Van Haesendonck, and R.A. Webb, Appl. Phys. Lett. 50, 1289 (1987)ADSCrossRefGoogle Scholar
  41. [34]
    M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986)ADSCrossRefGoogle Scholar
  42. [35]
    C. Van Haesendonck, J. Vranken, and Y. Bruynseraede, Phys. Rev. Lett. 58, 1968 (1987)ADSCrossRefGoogle Scholar
  43. [36]
    R.P. Peters, G. Bergmann, and R.M. Mueller, Phys. Rev. Lett. 58, 1964 (1987)ADSCrossRefGoogle Scholar
  44. [37]
    V. Chandrasekhar, Ph.D. Thesis, Yale University (1989)Google Scholar
  45. [38]
    J. Vranken, C. Van Haesendonck, and Y. Bruynseraede, Phys. Rev. B 37, 8502 (1988)ADSCrossRefGoogle Scholar
  46. [39]
    J.C. Licini, D.J. Bishop, M.A. Kastner, and J. Melngailis, Phys. Rev. Lett. 55, 2987 (1985);ADSCrossRefGoogle Scholar
  47. [39a]
    S.B. Kaplan and A. Hartstein, Phys. Rev. Lett. 56, 2403 (1986);ADSCrossRefGoogle Scholar
  48. [39b]
    V.T. Petrashov, P. Reinders, and M. Springford, JETP Lett. 45, 720 (1987)ADSGoogle Scholar
  49. [40]
    A.D. Stone, Phys. Rev. B 39, 10736 (1989)CrossRefGoogle Scholar
  50. [41]
    C.W.J. Beenakker and H. van Houten, Phys. Rev. B 37, 6544 (1988)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Chris Van Haesendonck
    • 1
  • Hans Vloeberghs
    • 1
  • Yvan Bruynseraede
    • 1
  1. 1.Laboratorium voor Vaste Stof-Fysika en MagnetismeKatholieke Universiteit LeuvenLeuvenBelgium

Personalised recommendations