Advertisement

Charge Kosterlitz-Thouless-Berezinskii Transition in Arrays of Tunnel Junctions

  • Rosario Fazio
Chapter
Part of the NATO ASI Series book series (NSSB, volume 254)

Abstract

In recent years much attention has been devoted to the study of junction arrays [1]. When the islands become superconducting a phase transition, in which the system reaches a state of phase coherence, takes place. In two-dimensional (2D) arrays the transition is driven by the dissociation of vortex-anti-vortex pairs. When the dimensions of the islands become such that it is not possible to disregard charging energy quantum fluctuations become important. The main effect is the suppression of the vortex unbinding transition temperature [2] and also at T = 0 it is possible to have a disordered phase. The tunneling of quasi-particles or Ohmic shunts introduce dissipation [3]. The most striking consequence is the existence of a critical value of the normal sheet resistance below which the superconductivity is recovered even when the charging energy exceeds the Josephson term [4], Experiments of fabricated 2D networks show a similar transition between an insulating and a superconductive state as the resistance of the sample is varied [5].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Proc. of the NATO Advanced Research Workshop on Coherence in Superconducting Networks, J.E. Mooij and G. Schön, eds. Physica B 152 (1988)Google Scholar
  2. [2]
    L. Jacobs, J.V. Jos, and M.A. Novotny, Phys. Rev. Lett. 53, 2177 (1984)ADSCrossRefGoogle Scholar
  3. [3]
    S. Chakravarty, G.L. Ingold, S. Kivelson, and A. Luther, Phys. Rev. Lett. 56, 2303 (1986);ADSCrossRefGoogle Scholar
  4. [3a]
    A. Kampf and G. Schön, Phys. Rev. B36, 3651 (1987);ADSCrossRefMathSciNetGoogle Scholar
  5. [3b]
    R. Fazio, G. Falci, and G. Giaquinta, Sol. St. Commun. 71, 275 (1989);ADSCrossRefGoogle Scholar
  6. [3c]
    W. Zwerger, J. Low Temp. Phys. 72, 291 (1988);ADSCrossRefGoogle Scholar
  7. [3d]
    G. Falci, R. Fazio, V. Scalia, and G. Giaquinta, to appear in LT19, Physica B (1990); see also ref. [1]Google Scholar
  8. [4]
    H.M. Jaeger et al., Phys. Rev. B34, 4920 (1986); Phys. Rev. B 40, 182 (1989);ADSCrossRefGoogle Scholar
  9. [5]
    L.G. Geerligs and J.E. Mooij, Physica B152, 212 (1988);CrossRefGoogle Scholar
  10. [5a]
    L.J. Geerligs, M. Peters, L.E.M. de Groot, A. Verbruggen, and J.E. Mooij, Phys. Rev. Lett. 63, 326 (1989)ADSCrossRefGoogle Scholar
  11. [6]
    J.E. Mooij, B.J. van Wees, L.J. Geerligs, M. Peters, R. Fazio, and G. Schön, subm. to Phys. Rev. Lett.Google Scholar
  12. [7]
    J.M. Kosterlitz and D.J. Thouless, J. Phys. C6, 1181 (1973).ADSGoogle Scholar
  13. [7a]
    V.L. Berezinskii, Zh. Eksp. Teor. Fiz. 59, 907 (1970) [Sov. Phys. JETP 32, 493 (1971)]Google Scholar
  14. [8]
    V. Ambegaokar, U. Eckern, and G. Schön, Phys. Rev. Lett. 48, 1745 (1982)ADSCrossRefGoogle Scholar
  15. [9]
    E. Ben-Jacob, E. Mottola, and G. Schön, Phys. Rev. Lett. 51, 2064 (1983)ADSCrossRefGoogle Scholar
  16. [10]
    G. Schön and A.D. Zaikin, Physica B152, 203 (1988)CrossRefGoogle Scholar
  17. [11]
    S. Chakravarty, S. Kivelson, G.T. Zimanyi, and B.I. Halperin, Phys. Rev. B37, 7256 (1988)CrossRefGoogle Scholar
  18. [12]
    S.T. Chui and J.D. Weeks, Phys. Rev. B14, 4978 (1976)ADSCrossRefGoogle Scholar
  19. [13]
    P. Minnhagen, Rev. Mod. Phys. 59, 1001 (1987)ADSCrossRefGoogle Scholar
  20. [14]
    R. Fazio and G. Schön, to appear in LT19, Physica B (1990)Google Scholar
  21. [15]
    Y. Saito and H. Müller-Krumbhaar, in: Applications of the Monte Carlo Method, K. Binder, ed., Topics in Current Physics 36, Springer-Verlag (1984)Google Scholar
  22. [16]
    H.J.E. Knops, Phys. Rev. Lett. 39, 766 (1977);ADSCrossRefMathSciNetGoogle Scholar
  23. [16a]
    J.D. Weeks, in: Ordering in Strongly Fluctuating Condensed Matter Systems, T. Riste, ed., NATO-ASI series 50, Plenum Press, New York (1980)Google Scholar
  24. [17]
    A. Widom and S. Badjou, Phys. Rev. B37, 7915 (1988)ADSCrossRefGoogle Scholar
  25. [18]
    L.P. Kadanoff, J. Phys. A11, 1399 (1978)ADSMathSciNetGoogle Scholar
  26. [19]
    D.R. Nelson and B.I. Halperin, Phys. Rev. B21, 5312 (1980)ADSCrossRefGoogle Scholar
  27. [20]
    F. Guinea and G. Schön, J. Low Temp. Phys 69, 219 (1987)ADSCrossRefGoogle Scholar
  28. [21]
    J.V. Jose, L.P. Kadanoff, S. Kirkpatrick, and D.R. Nelson, Phys. Rev. B16, 1217 (1977);ADSCrossRefGoogle Scholar
  29. [21a]
    M.P.A. Fischer and D.H. Lee, Phys. Rev. B39, 2756 (1989)ADSCrossRefGoogle Scholar
  30. [22]
    S. Elitzur, R. Pearson, and J. Shigemitzu, Phys. Rev. D19, 3638 (1979)Google Scholar
  31. [23]
    E. Granato and J.M. Kosterlitz, Phys. Rev. B33, 4767 (1986);ADSCrossRefGoogle Scholar
  32. [23a]
    M. Yosefln and E. Domany, Phys. Rev. B32, 1778 (1985)ADSCrossRefMathSciNetGoogle Scholar
  33. [24]
    J. Cardy and S. Ostlund, Phys. Rev. B25, 6899 (1982)ADSCrossRefGoogle Scholar
  34. [25]
    B.J. van Wees, preprintGoogle Scholar
  35. [26]
    R. Fazio and G. Schön, Proc. of Intl. Conference on Transport Properties of Superconductors, Rio de Janeiro (1990)Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Rosario Fazio
    • 1
    • 2
  1. 1.Department of Applied Physics DelftUniversity of TechnologyDelftThe Netherlands
  2. 2.Istituto di Fisica, Facoltà di IngegneriaUniversità di CataniaCataniaItaly

Personalised recommendations