Quantum Effects in Granular Superconductors

  • Wilhelm Zwerger
Part of the NATO ASI Series book series (NSSB, volume 254)


Granular superconductors are strongly inhomogeneous systems consisting of locally superconducting grains in an insulating matrix. In these lectures we will discuss the consequences of the Coulomb interaction on the mesoscopic scale of grains and of dissipative effects in these systems. Throughout we assume that the granular system may be modelled as a network of tunnel junctions which are normal junctions above and Josephson junctions below the transition to local superconductivity at T c l . The lectures are organized as follows: section 2 starts with a discussion of tunneling in non-superconducting granular systems and in particular the behavior of the conductance due to the effects of finite size and charging in small grains. In section 3 we discuss the appearance of local superconductivity within the grains and the Josephson coupling between them. It is shown that both thermal fluctuations and Coulomb effects may lead to a destruction of global superconductivity. The influence of dissipative effects associated with normal electron tunneling is treated in section 4 for single junctions. In section 5 we determine the phase diagram at zero temperature of one and two-dimensional (2 D) networks of quantum Josephson junctions including dissipation. Finally in section 6 we discuss corresponding experiments on artificially created Josephson junction arrays and very thin granular films.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Percolation, Localization and Superconductivity, A.M. Goldman and S.A. Wolf, eds., Nato ASI series, Plenum Press, New York (1984)Google Scholar
  2. [2]
    Inhomogeneous Superconductors, T.L. Francavilla, D.V. Gubser, J.R. Leibowitz, and S.A. Wolf, eds., AIP Conference Proceedings No. 58, AIP, New York 1979Google Scholar
  3. [3]
    S. Kobayashi and F. Komori, J. Phys. Soc. Jpn. 57, 1884 (1988); see also the contribution by S. Kobayashi in this volumeADSCrossRefGoogle Scholar
  4. [4]
    D.J. Thouless, Phys. Rev. Lett. 39, 1167 (1977)ADSCrossRefGoogle Scholar
  5. [5]
    V. Ambegaokar, B.I. Halperin, and J.S. Langer, Phys. Rev. B 4, 2612 (1971)ADSCrossRefGoogle Scholar
  6. [6]
    R. Németh and B. Mühlschlegel, Z. Phys. B — Condensed Matter 70, 159 (1988)ADSCrossRefGoogle Scholar
  7. [7]
    A. Kawabata, J. Phys. Soc. Jpn. 43, 1491 (1977)ADSCrossRefGoogle Scholar
  8. [8]
    C.G. Neugebauer and M.B. Webb, J. Appl. Phys. 33, 74 (1962)ADSCrossRefGoogle Scholar
  9. [9]
    B. Abeles, P. Sheng, M.D. Coutts, and Y. Arie, Adv. Phys. 24, 407 (1975)ADSCrossRefGoogle Scholar
  10. [10]
    A.L. Efros and B.L Shklovskii, J. Phys. C 8, L49 (1975)ADSGoogle Scholar
  11. [11]
    B. Abeles and P. Sheng, in Electrical Transport and Optical Properties of Inhomogeneous Media, J.C. Garland and D.B. Tanner, eds., AIP Conference Proceedings No. 40, AIP, New York (1978)Google Scholar
  12. [12]
    Y. Imry and M. Strongin, Phys. Rev. B24, 6353 (1981)ADSCrossRefGoogle Scholar
  13. [13]
    R. Brown and E. Simanek, Phys. Rev. B34, 2957 (1986)ADSCrossRefGoogle Scholar
  14. [14]
    E. Simanek, Phys. Lett. 119 A, 477 (1987)CrossRefMathSciNetGoogle Scholar
  15. [15]
    L.J. Geerligs, V.F. Anderegg, CA. van der Jeugd, J. Romijn, and J.E. Mooij, Europhys. Lett. 10, 79 (1989)ADSCrossRefGoogle Scholar
  16. [16]
    B. Mühlschlegel, D.J. Scalapino, and R. Denton, Phys. Rev. B 6, 1767 (1972)CrossRefGoogle Scholar
  17. [17]
    W. Buckel and R. Hilsch, Z. Phys. 138, 109 (1954)ADSCrossRefGoogle Scholar
  18. [18]
    G. Deutscher, Y. Imry, and L. Günther, Phys. Rev. B 10, 4598 (1974)ADSCrossRefGoogle Scholar
  19. [19]
    K.B. Efetov, Sov. Phys. JETP 51, 1015 (1980)ADSGoogle Scholar
  20. [20]
    M. Ma and P.A. Lee, Phys. Rev. B 32, 5658 (1985)ADSCrossRefGoogle Scholar
  21. [21]
    M. Ma, B.L Halperin, and P.A. Lee, Phys. Rev. B 34, 3136 (1986)ADSCrossRefGoogle Scholar
  22. [22]
    Such separated transitions are found for instance in arrays of SNS weak links, see D.W. Abraham, C.J. Lobb, M. Tinkham, and T.M. Klapwijk, Phys. Rev. B 26, 5268 (1982)Google Scholar
  23. [23]
    R.A. Ferrell and R.E. Prange, Phys. Rev. Lett. 10, 479 (1963)ADSCrossRefGoogle Scholar
  24. [24]
    V. Ambegaokar and A. Baratoff, Phys. Rev. Lett. 10, 486 (1963) and ibid. 11, 104 (Erratum) (1963)ADSCrossRefGoogle Scholar
  25. [25]
    C. Ebner and D. Stroud, Phys. Rev. B 25, 5711 (1982).ADSCrossRefGoogle Scholar
  26. [26]
    P.W. Anderson in Lectures on the Many Body Problem, E. Caianello, ed., Academic Press, New York (1964)Google Scholar
  27. [27]
    Note that φ is periodic and n is discrete and thus the commutation relation should more properly be written as [e , n] = -e Google Scholar
  28. [28]
    E. Simanek, Sol. St. Commun. 31, 419 (1979)ADSCrossRefGoogle Scholar
  29. [29]
    E. Ben-Jacob, E. Mottola, and G. Schön, Phys. Rev. Lett. 51, 2064 (1983); for a different approach see T.L. Ho, Phys. Rev. Lett. 51, 2060 (1983)ADSCrossRefGoogle Scholar
  30. [30]
    V. Ambegaokar, U. Eckern, and G. Schön, Phys. Rev. Lett. 48, 1745 (1982), and Phys. Rev. B 30, 6419 (1984)ADSCrossRefGoogle Scholar
  31. [31]
    F. Guinea and G. Schön, J. Low Temp. Phys. 69, 219 (1987)ADSCrossRefGoogle Scholar
  32. [32]
    For a comprehensive recent review see G. Schön and A.D. Zaikin, Phys. Rep. to be published (1990)Google Scholar
  33. [33]
    See for instance A.J. Leggett in Chance and Matter, J. Souletie, J. Vannimenus, and R. Stora, eds., Les Houches 1986, North Holland, Amsterdam (1987)Google Scholar
  34. [34]
    A. Schmid, Phys. Rev. Lett. 51, 1506 (1983);ADSCrossRefGoogle Scholar
  35. [34a]
    M.P.A. Fisher and W. Zwerger, Phys. Rev. B 32, 6190 (1985);ADSCrossRefGoogle Scholar
  36. [34b]
    W. Zwerger, Phys. Rev. B 35, 4737 (1987)ADSCrossRefGoogle Scholar
  37. [35]
    W. Zwerger, Europhys. Lett. 9, 421 (1989), and Z. Phys. B — Condensed Matter 78, 111 (1990)ADSCrossRefGoogle Scholar
  38. [36]
    R.M. Bradley and S. Doniach, Phys. Rev. B 30, 1138 (1984)ADSCrossRefGoogle Scholar
  39. [37]
    S.E. Korshunov, Europhys. Lett. 9, 107 (1989);ADSCrossRefGoogle Scholar
  40. [37a]
    P. Bobbert, R. Fazio, G. Schön, and G.T. Zimanyi, Phys. Rev. B 41, 4009 (1990)ADSCrossRefGoogle Scholar
  41. [38]
    S.T. Chui and J.D. Weeks, Phys. Rev. B 14, 4978 (1976)ADSCrossRefGoogle Scholar
  42. [39]
    D.S. Fisher and J.D. Weeks, Phys. Rev. Lett. 50, 1077 (1983)ADSCrossRefGoogle Scholar
  43. [40]
    L.J. Geerligs, M. Peters, L.E.M. de Groot, A. Verbruggen, and J.E. Mooij, Phys. Rev. Lett. 63, 326 (1989)ADSCrossRefGoogle Scholar
  44. [41]
    H.M. Jäger, D.B. Haviland, A.M. Goldman, and B.G. Orr, Phys. Rev. B 34, 4920 (1986)CrossRefGoogle Scholar
  45. [42]
    R.C. Dynes, J.P. Garno, and J.M. Rowell, Phys. Rev. Lett. 40, 479 (1978)ADSCrossRefGoogle Scholar
  46. [43]
    A.E. White, R.C. Dynes, and J.P. Garno, Phys. Rev. B 33, 3549 (1986)ADSCrossRefMathSciNetGoogle Scholar
  47. [44]
    M. Kunchur, P. Lindenfeld, W.L. McLean, and J.S. Brooks, Phys. Rev. Lett. 59, 1232 (1987)ADSCrossRefGoogle Scholar
  48. [45]
    R.A. Ferrell and B. Mirhashem, Phys, Rev. B 37, 648 (1988)ADSCrossRefGoogle Scholar
  49. [46]
    S. Chakravarty, S. Kivelson, G.T. Zimanyi, and B.I. Halperin, Phys. Rev. B 35, 7256 (1987)ADSCrossRefGoogle Scholar
  50. [47]
    A.F. Hebard and M.A. Paalanen, Phys. Rev. B 30, 4063 (1984)ADSCrossRefGoogle Scholar
  51. [48]
    D.B. Haviland, Y. Liu, and A.M. Goldman, Phys. Rev. Lett. 62, 2180 (1989)ADSCrossRefGoogle Scholar
  52. [49]
    M. Strongin, R.S. Thompson, O.F. Kammerer, and J.E. Crow, Phys. Rev. B 1, 1078 (1970)ADSCrossRefGoogle Scholar
  53. [50]
    M.P.A. Fisher, G. Grinstein, and S.M. Girvin, Phys. Rev. Lett. 64, 587 (1990)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Wilhelm Zwerger
    • 1
  1. 1.Institut für Theoretische PhysikUniversität GöttingenGöttingenF. R. Germany

Personalised recommendations