Advertisement

Phase Coherence and Critical Resistance in Superconducting Granular Films

  • Shun-ichi Kobayashi
Chapter
Part of the NATO ASI Series book series (NSSB, volume 254)

Abstract

A granular superconductor is an ensemble of small superconducting grains, the sizes and shapes of which are randomly distributed to some extent. The grains are interacting with each other through the Josephson coupling which is also random. The physical properties of granular superconductors depend largely on the mean size of grains, d, and the mean Josephson coupling energy, E J . Usually, d is smaller than the coherence length. Therefore each grain is a so-called zero dimensional superconductor. In the limit of large size and weak coupling, the system can be regarded as a random Josephson network, while in the opposite limit, it is a homogeneously disordered superconductor. Many interesting phenomena are expected between these two limits. In this paper, the experiments of two-dimensional (2 D) thin films of granular superconductors are reviewed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Simanek, Sol. St. Commun. 31, 419 (1979)ADSCrossRefGoogle Scholar
  2. [2]
    S. Kobayashi, Y. Tada, and W. Sasaki, J. Phys. Soc. Jpn. 49, 2075 (1980)ADSCrossRefGoogle Scholar
  3. [3]
    K.B. Efetov, Sov. Phys. JETP 51, 1015 (1980);ADSGoogle Scholar
  4. [3a]
    P. Fazekas, Z. Phys. B 45, 2836 (1982);Google Scholar
  5. [3b]
    J.V. Jose, Phys. Rev. B 29, 2836 (1984)ADSCrossRefGoogle Scholar
  6. [4]
    S. Maekawa and H. Fukuyama, J. Phys. Soc. Jpn. 51, 1380 (1982)ADSCrossRefGoogle Scholar
  7. [5]
    S. Okuma, F. Komori, Y. Ootuka, and S. Kobayashi, J. Phys. Soc. Jpn. 52, 2639 (1983)ADSCrossRefGoogle Scholar
  8. [6]
    J.M. Geball and M.R. Beasley, Phys. Rev. B 29, 4167 (1984);ADSCrossRefGoogle Scholar
  9. [6a]
    M.R. Beasley, Jpn. J. Appi. Phys. 26, 1967 (1987)CrossRefGoogle Scholar
  10. [7]
    A.F. Hebard and M.A. Paalanen, Phys. Rev. Lett. 54, 2155 (1985)ADSCrossRefGoogle Scholar
  11. [8]
    A.M. FinkePstein, JETP Lett. 45, 46 (1987)ADSGoogle Scholar
  12. [9]
    V. Ambegaokar and A. Baratoti, Phys. Rev. Lett. 10, 486 (1963)ADSCrossRefGoogle Scholar
  13. [10]
    A. Schmid, Phys. Rev. Lett. 51, 1506 (1983)ADSCrossRefGoogle Scholar
  14. [11]
    M.P.A. Fisher and W. Zwerger, Phys. Rev. B 32, 6190 (1985)ADSCrossRefGoogle Scholar
  15. [12]
    S. Chakravarty, G.L. Ingold, S. Kivelson, and A. Luther, Phys. Rev. Lett. 56, 2303 (1986)ADSCrossRefGoogle Scholar
  16. [13]
    V. Ambegaokar, U. Eckern, and G. Schön, Phys. Rev. Lett. 48, 1745 (1982)ADSCrossRefGoogle Scholar
  17. [14]
    B.G. Orr, H.M. Jeager, and A.M. Goldman, Phys. Rev. B 32, 7586 (1985)ADSCrossRefGoogle Scholar
  18. [15]
    S. Kobayashi and F. Komori, J. Phys. Soc. Jpn. 57, 1884 (1988)ADSCrossRefGoogle Scholar
  19. [16]
    S. Kobayashi, A. Nakamura, and F. Komori, in preparationGoogle Scholar
  20. [17]
    H.M. Jeager, D.B. Haviland, A.M. Goldman, and B.G. Orr, Phys. Rev. B 32, 4920 (1985);Google Scholar
  21. [17a]
    H.M. Heager, D.B. Haviland, B.G. Orr, and A.M. Goldman, Phys. Rev. B 40, 182 (1989)CrossRefGoogle Scholar
  22. [18]
    A. Asamitsu, S. Okuma, and N. Nishida, private communicationGoogle Scholar
  23. [19]
    D.B. Haviland, Y. Liu, and A.M. Goldman, Phys. Rev. Lett. 62, 2180 (1989)ADSCrossRefGoogle Scholar
  24. [20]
    A.I. Larkin, Yu.N. Ovchinnikov, and A. Schmid, Physica B 152 266 (1988)CrossRefGoogle Scholar
  25. [21]
    M.P.A. Fisher, G. Grinstein, and S.M. Girvin, Phys. Rev. Lett. 64, 587 (1990)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Shun-ichi Kobayashi
    • 1
  1. 1.Faculty of ScienceUniversity of TokyoTokyo 113Japan

Personalised recommendations