Superconducting Wire Networks

  • Bernard Pannetier
Part of the NATO ASI Series book series (NSSB, volume 254)


Superconductivity offers an unique example in condensed matter physics where the electrons occupy a single coherent quantum state over macroscopic distances. In homogeneous superconductors energy considerations usually ensure that, in most physical situations, the superconducting pair wavefunction is nearly constant in both phase and amplitude. The development of modern microfabrication techniques has made possible recently to produce a wide variety of complex artificial structures where, to a certain extent, the physicist is able to constrain, at will, the wavefunction, for example by enforcing the boundary conditions (BC) or by applying an external magnetic field [1,2].


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    See for a recent review: Coherence in Superconducting networks, J.E. Mooij and G.B. Schön, eds., Physica B 152 (1988)Google Scholar
  2. [2]
    Proceedings of the Electronic properties of 2 D systems, to appear in Surf. Sc. (1990), and references thereinGoogle Scholar
  3. [3]
    V.L. Ginzburg and L. Landau, Zh Eksp. Teor. Fiz. 20, 1064 (1950)Google Scholar
  4. [4]
    P.G. de Gennes, Superconductivity of metals and alloys, W.A. Benjamin, ed., New York (1966)Google Scholar
  5. [5]
    A.A. Abrikosov, Zh. Eksp. Teor. Fiz. 32, 1442 (1957) [Sov. Phys. JETP 5, 1174(1957)]Google Scholar
  6. [6]
    Y.Y. Wang, R. Rammal, and B. Pannetier, J. Low Temp. Phys. 68, 301 (1987)ADSCrossRefGoogle Scholar
  7. [7]
    P.G. de Gennes, C.R. Ac. Sci. B 292, 9 and 279 (1981)Google Scholar
  8. [8]
    S. Alexander, Phys. Rev. B 27, 1541 (1983)ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    W.A. Little and R. Parks, Phys. Rev. A 13, 97 (1964)Google Scholar
  10. [10]
    H.J. Fink, A. Lopez, and R. Maynard, Phys. Rev. B 25, 5237 (1982);CrossRefGoogle Scholar
  11. [10a]
    J. Simonin, D. Rodriguez, and A. Lopez, Phys. Rev. Lett. 49, 944 (1982);ADSCrossRefGoogle Scholar
  12. [10b]
    J. Riess, J. Phys. Lett. 43, L277 (1982)ADSCrossRefGoogle Scholar
  13. [11]
    R. Rammal, T.C. Lubensy, and G. Toulouse, Phys. Rev. B 27, 2820 (1983)ADSCrossRefGoogle Scholar
  14. [12]
    see for example J. B. Sokolov, Phys. Rep. 126, 189 (1985)ADSCrossRefGoogle Scholar
  15. [13]
    P.W. Anderson, Phys. Scr. T 27, 660 (1989);Google Scholar
  16. [13a]
    P.B. Wiegmann, ibid, 160; P. Lederer, D. Poilblanc, and T.M. Rice, Phys. Rev. Lett. 63, 1519 (1989);ADSCrossRefGoogle Scholar
  17. [13b]
    R. Rammal and J. Bellissard, Phys. Rev. Lett., to be publishedGoogle Scholar
  18. [14]
    M.Y. Azbel, Zh. Eksp. Teo. Fiz. 46, 929 (1964) [Sov. Phys. JETP 19, 634 (1964)];Google Scholar
  19. [14a]
    D.R. Hofstadter, Phys. Rev. B 14, 2239 (1976)ADSCrossRefGoogle Scholar
  20. [15]
    Y.Y. Wang, B. Doucot, R. Rammal, and B. Pannetier, Phys. Lett. A 145 (1986)Google Scholar
  21. [16]
    Y.Y. Wang, B. Pannetier, and R. Rammal, J. de Phys. 48, 2067 (1987)CrossRefGoogle Scholar
  22. [17]
    see R. Rammal, in Ref. [1]Google Scholar
  23. [18]
    B. Pannetier, J. Chaussy, and R. Rammal, J. Phys. Lett. 44, L853 (1983);CrossRefGoogle Scholar
  24. [18a]
    B. Pannetier, J. Chaussy, R. Rammal, and J.C. Villégier, Phys. R.v. Lett. 53, 1845 (1984)ADSCrossRefGoogle Scholar
  25. [19]
    S. Teitel and C. Jayaprakash, Phys. Rev. Lett. 51 (1983); see also S. Teitel, in Ref. [1]Google Scholar
  26. [20]
    T.C. Halsey, Phys. Rev. B 31, 5728 (1985);ADSCrossRefGoogle Scholar
  27. [20a]
    T.C. Halsey, Phys. Rev. Lett. 55, 1018 (1985)ADSCrossRefGoogle Scholar
  28. [21]
    P. Gandit, J. Chaussy, B. Pannetier, A. Vareille, and A. Tissier, Europhys. Lett., 623 (1987); and in Ref. [1]Google Scholar
  29. [22]
    B. Jeanneret, Ph. Fluckiger, J.L. Gavilano, Ch. Leemann, and P. Martinoli, Phys. Rev. B 40, 11374 (1989)CrossRefGoogle Scholar
  30. [23]
    see H.J. Mooij, this volumeGoogle Scholar
  31. [24]
    H.J. Fink, D. Rodriguez, and A. Lopez, Phys. Rev. 38, 8767 (1988);ADSCrossRefGoogle Scholar
  32. [24a]
    H.J. Fink and V. Grundfeld, Phys. Rev. B 31, 600 (1985)ADSCrossRefGoogle Scholar
  33. [25]
    Y.Y. Wang, B. Pannetier, and R. Rammal, J. Physique 49, 2045 (1988)CrossRefGoogle Scholar
  34. [26]
    O. Buisson, submitted to Europhys. Lett. (March 1990)Google Scholar
  35. [27]
    J.M. Gordon, A.M. Goldman, J. Maps, D. Costello, R. Tiberio, and B. Whitehead, Phys. Rev. Lett. 56, 2280 (1986)ADSCrossRefGoogle Scholar
  36. [28]
    B. Douçot, Y.Y. Wang, J. Chaussy, B. Pannetier, A. Vareille, and D. Henry, Phys. Rev. Lett. 57, 1235 (1986);ADSCrossRefGoogle Scholar
  37. [28a]
    Y.Y. Wang, R. Steinmann, J. Chaussy, R. Rammal, and B. Pannetier, Jpn. J. Appl. Phys. 26, Sup. 26–3 (1987)Google Scholar
  38. [29]
    S. Alexander and R. Orbach, J. Phys. Lett. 43, L625 (1982)CrossRefGoogle Scholar
  39. [30]
    R. Rammal and G. Toulouse, Phys. Rev. Lett. 49, 1194 (1982);ADSCrossRefMathSciNetGoogle Scholar
  40. [30a]
    J.M. Ghez, Y.Y. Wang, R. Rammal, B. Pannetier, and J. Bellissard, Sol. St. Commun. 64, 1291 (1987)ADSCrossRefGoogle Scholar
  41. [31]
    J.M. Gordon, A. Goldman, and B. Whitehead, Phys. Rev. Lett. 59, 2311 (1987); and in Ref. [1]ADSCrossRefGoogle Scholar
  42. [32]
    see for example G. Deutscher, in: Applications of percolation, in Chance and Matter, J. Souletie, J. Vannimenus, and R. Stora, eds., North Holland (1987)Google Scholar
  43. [33]
    R. Rammal, T.C. Lubensky, and G. Toulouse, J. Phys. Lett. 44, L65 (1983);CrossRefGoogle Scholar
  44. [33a]
    P.G. de Gennes, in: Percolation, Localization and Superconductivity, A.M. Goldman and S.A. Wolf, eds., Plenum Press, New York (1984); see also Refs. [31] and [32]Google Scholar
  45. [34]
    J. Simonin and A. Lopez, Phys. Rev. Lett. 56, 2649 (1986)ADSCrossRefGoogle Scholar
  46. [35]
    R. Steinman and B. Pannetier, Europh. Lett. 5, 559 (1988); Physica C 153, 1487 (1988)ADSCrossRefGoogle Scholar
  47. [36]
    CM. Soukoulis, G.G. Grest, and Q. Li, Phys. Rev. B 38, 12000 (1988)CrossRefGoogle Scholar
  48. [37]
    M.G. Forester, H.J. Lee, M. Tinkham, and C. Lobb, Phys. Rev. B 37, 5966 (1988);ADSCrossRefGoogle Scholar
  49. [37a]
    S. Benz, M.G. Forester, M. Tinkham, and C.J. Lobb, Phys. Rev. B 38, 2869 (1988)ADSCrossRefGoogle Scholar
  50. [38]
    E. Granato and J.M. Kosterlitz, Phys. Rev. Lett 62, 823 (1989); see also E. Granato and J.M. Kosterlitz, in Ref. [1]ADSCrossRefGoogle Scholar
  51. [39]
    A. Behrooz, M.J. Burns, H. Deckam, D. Levine, B. Whitehead, and P.M. Chaikin, Phys. Rev. Lett. 57, 368 (1986)ADSCrossRefGoogle Scholar
  52. [40]
    Y.Y. W’ang, R. Steinman, J. Chaussy, R. Rammal, and B. Pannetier, Jpn. J. of Appi. Phys. 26, 1415 (1987); see also D.J. Van Harlingen, K.N. Springer, G.C. Hilton, and I. Tien, in Ref. [1]Google Scholar
  53. [41]
    F. Nori and Q. Niu, in Ref. [1]Google Scholar
  54. [42]
    P. Santhanam, C.C. Chi, and W.W. Molsen, Phys. Rev. B 37, 2360 (1988)ADSCrossRefGoogle Scholar
  55. [43]
    O. Buisson et al., to be publishedGoogle Scholar
  56. [44]
    U. Sivan, Y. Imry, and C. Hartzstein, Phys. Rev. B 39, 1242 (1989)ADSCrossRefMathSciNetGoogle Scholar
  57. [45]
    K. Nakamura and H. Thomas, Phys. Rev. Lett. 61, 247 (1988)ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Bernard Pannetier
    • 1
  1. 1.Centre National de la Recherche Scientifique Centre de Recherches sur les Très Basses TemperaturesLaboratoire associé á l’Université J. FourierGrenoble CedexFrance

Personalised recommendations