Advertisement

Localization and String Theory

  • Shinobu Hikami
Part of the NATO ASI Series book series (NSSB, volume 254)

Abstract

Anderson localization has been investigated by the renormalization group method [1–3]. The diffusion-diffusion interaction of a particle in a random potential becomes important in two-dimensions (2D), and eventually, the localized state is realized in 2D when the random potential has time reversal invariance and space-inversion symmetry (orthogonal case). For the strong spin-orbit case and for the magnetic impurity or the magnetic field case, the localization behavior belongs to a different universality class (symplectic or unitary case) [4]. These universal localization behaviors are described by an effective Hamiltonian, which predicts the long-distance behavior of a diffusion mode. The diffusion constant is proportional to the conductivity. The effective Hamiltonian becomes equivalent to the non-linear σ-model near 2D from the point of view of the renormalization group analysis for the diffusion constant. The non-linear σ-model [5] has a particular symmetry, and the field variable is restricted to O(N)/O(p) × O(N-p) manifold with the replica limit p = N → 0 due to the random impurity average. We denote this manifold by O(0)/O(0) × O(0), hereafter.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Abrahams, P.W. Anderson, D.C. Licciarclello, and T.V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979)ADSCrossRefGoogle Scholar
  2. [2]
    F.J. Wegner, Z. Phys. B 35, 207 (1979)Google Scholar
  3. [3]
    S. Hikami, Phys. Rev. B 24, 2671 (1981)ADSCrossRefGoogle Scholar
  4. [4]
    S. Hikami, A.I. Larkin, and Y. Nagaoka, Prog. Theor. Phys. 63, 707 (1980)ADSCrossRefGoogle Scholar
  5. [5]
    E. Brézin, S. Hikami, and J. Zinn-Justin, Nucl. Phys. B 165, 528 (1980)ADSCrossRefGoogle Scholar
  6. [6]
    Superstring Theory, Vol. 1, M.B. Green, J.H. Schwarz, and E. Witten, eds., Cambridge University Press, Cambridge (1987)zbMATHGoogle Scholar
  7. [7]
    C.G. Callan, D. Friedan, E.J. Martinec, and M.J. Perry, Nucl. Phys. B 262, 593 (1985)ADSCrossRefMathSciNetGoogle Scholar
  8. [8]
    R.R. Metsaev and A.A. Tseytlin, Phys. Rev. Lett. B 185, 52 (1987)MathSciNetGoogle Scholar
  9. [9]
    A.O. Caldeira and A.J. Leggett, Ann. Phys. (N.Y.) 149, 374 (1983);ADSCrossRefGoogle Scholar
  10. [9a]
    A.O. Caldeira and A.J. Leggett, Phys. Rev. Lett. 46, 211 (1981)ADSCrossRefGoogle Scholar
  11. [10]
    C.G. Callan and L. Thorlacius, Nucl. Phys. B 329, 117 (1990)ADSCrossRefMathSciNetGoogle Scholar
  12. [11]
    S. Hikami, Physica A 167, 149 (1990)ADSCrossRefGoogle Scholar
  13. [12]
    D.J. Gross and E. Witten, Nucl. Phys. B 277, 1 (1986)ADSCrossRefMathSciNetGoogle Scholar
  14. [13]
    M.T. Grisaru, A.E.M. Van de Ven, and D. Zanon, Nucl. Phys. B 287, 189 (1987)ADSCrossRefGoogle Scholar
  15. [14]
    D. Friedan, Phys. Rev. Lett. 45, 1957 (1980)ADSCrossRefMathSciNetGoogle Scholar
  16. [15]
    F.J. Wegner, Nucl. Phys. B 316, 663 (1989)ADSCrossRefMathSciNetGoogle Scholar
  17. [16]
    S. Hikami and A. Fujita, preprintGoogle Scholar
  18. [17]
    J.A. Gracey, J. Phys. A 23, 2183 (1990)ADSMathSciNetGoogle Scholar
  19. [18]
    A.N. Vassil’ev, Yu. M. Pis’mak, and Yu. R. Honkonon, Theor. Math. Phys. 46, 104 (1981)CrossRefGoogle Scholar
  20. [19]
    W. Bernreuther and F.J. Wegner, Phys. Rev. Lett. 57, 1383 (1986)ADSCrossRefGoogle Scholar
  21. [20]
    S. Hikami, Nucl. Phys. B 215, 555 (1983)ADSCrossRefMathSciNetGoogle Scholar
  22. [21]
    S. Hikami and E. Brézin, J. Phys. A 11, 1141 (1978)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Shinobu Hikami
    • 1
  1. 1.Department of Pure and Applied SciencesUniversity of TokyoTokyo153 Japan

Personalised recommendations