Advertisement

Frequency Dependent Transport in Quantum Coherent Systems

  • Bernhard Kramer
  • Jan Mašek
Part of the NATO ASI Series book series (NSSB, volume 254)

Abstract

At low enough temperatures the electrical transport properties of small conductors exhibit a rich variety of quantum phenomena due to the suppression of inelastic, phase randomizing scattering. They are related to finite size quantization, and to the coherence of the electron states throughout the whole sample. For the theoretical description of these mesoscopic effects one needs
  1. 1.

    information about the single particle quantum states in finite, but not atomic(!), systems in the presence of disorder,

     
  2. 2.

    a suitable transport theory that includes the effect of contacts and leads, and

     
  3. 3.

    information about the influence of interactions on the states, and on the transport processes.

     

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Schreiber, Physica A 167, 188 (1990)CrossRefMathSciNetGoogle Scholar
  2. [2]
    R. Landauer, in: Localization, Interaction, and Transport Phenomena, B. Kramer, G. Bergmann, Y. Bmynseraede, eds., Springer Series in Solid-State Sciences 61, 38, Springer Verlag, Berlin (1985)CrossRefGoogle Scholar
  3. [3]
    M. Büttiker, in: Festkörperprobleme/Advances in Solid State Physics, U. Rössler, ed., vol. 30, 42, Vieweg Verlag, Braunschweig (1990)Google Scholar
  4. [4]
    D. S. Fisher and P. A. Lee, Phys. Rev. B 23, 6851 (1981)ADSCrossRefMathSciNetGoogle Scholar
  5. [5]
    D. C. Langreth and E. Abrahams,Phys. Rev. B 24, 2978 (1981)ADSCrossRefGoogle Scholar
  6. [6]
    E. N. Economou and C. M. Soukoulis, Phys. Rev. Lett. 46, 618 (1981)ADSCrossRefGoogle Scholar
  7. [7]
    H. L. Engquist and P. W. Anderson, Phys . Rev. B 24, 1151 (1981)ADSCrossRefGoogle Scholar
  8. [8]
    M. Ya. Azbel, J. Phys. C 14, L225 (1981)ADSGoogle Scholar
  9. [9]
    D. J. Thouless, Phys. Rev. Lett., 47, 972 (1981)ADSCrossRefGoogle Scholar
  10. [10]
    M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B 31, 6207 (1985)CrossRefGoogle Scholar
  11. [11]
    A. D. Stone and A. Szafer, IBM J. Res. Develop. 32, 384 (1988)CrossRefGoogle Scholar
  12. [12]
    H. U. Baranger and A. D. Stone, Phys. Rev. B 40, 8169 (1989-II)ADSCrossRefGoogle Scholar
  13. [13]
    V. Fal’ko and D. E. Khmel’nitskii, ZETF 95, 349 (1989)Google Scholar
  14. [14]
    V. Fal’ko, Europhys. Lett., 8, 785 (1989)ADSCrossRefGoogle Scholar
  15. [15]
    B. L. Altshuler and A. G. Aronov, in: Electron-Electron Interactions in Disordered Systems, A. L. Efros and M. Pollak, eds., 1, North Holland (1985)Google Scholar
  16. [16]
    D. J. Thouless, Phys. Rev. Lett. 39, 1167 (1977);ADSCrossRefGoogle Scholar
  17. [16a]
    D. J. Thouless, Sol. St. Commun. 34, 683 (1980)ADSCrossRefGoogle Scholar
  18. [17]
    P. W. Anderson, E. Abrahams, and T. V. Ramakrishnan, Phys. Rev. Lett. 43, 718 (1979)ADSCrossRefGoogle Scholar
  19. [18]
    B. Kramer and J. Maek, J. Phys. C. Sol. State Phys. 21, L1147 (1988)ADSCrossRefGoogle Scholar
  20. [19]
    J. Maek and B. Kramer, Z. Phys. B 75, 37 (1989)CrossRefGoogle Scholar
  21. [20]
    J. Mašek, P. Lipavský, and B. Kramer, J. Phys.: Cond. Matter 1, 6395 (1989)ADSGoogle Scholar
  22. [21]
    B. Velický, J. Mašek, and B. Kramer, Phys. Lett. A 140, 447 (1989)CrossRefGoogle Scholar
  23. [22]
    J. Mašek and B. Kramer, Sol St. Commun. 68, 611 (1988)ADSCrossRefGoogle Scholar
  24. [23]
    B. Kramer, J. Mašek, V. Špička, and B. Velický, Surf. Sci. 229, 316 (1990)ADSCrossRefGoogle Scholar
  25. [24]
    P. A. Lee, A. D. Stone, and H. Fukuyama, Phys. Rev. B 35, 1039 (1987)ADSCrossRefGoogle Scholar
  26. [25]
    Y. Imry, Europhys. Lett. 1, 249 (1986)ADSCrossRefGoogle Scholar
  27. [26]
    A.D. Stone, K.A. Muttalib, J.-L. Pichard, Springer Procs. in Physics 28, 315 (1987)Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Bernhard Kramer
    • 1
  • Jan Mašek
    • 2
  1. 1.Physikalisch-Technische BundesanstaltBraunschweigF. R. Germany
  2. 2.Czechoslovak Academy of SciencesInstitute of PhysicsPragueCzechoslovakia

Personalised recommendations