Spectroscopy on Laterally Confined Electron Systems

  • Wolfgang Hansen
Part of the NATO ASI Series book series (NSSB, volume 254)


Progressive decrease of the size of mesoscopic devices enables us to enter the area of quantum confined electron systems in which the system extensions are comparable to the Fermi-wavelength. It is intriguing to investigate how spatial confinement influences system properties when the system size drops from macroscopic dimensions (W ≫ λF) to extents comparable to the Fermi wavelength (W ≃ λF). In such systems not only phase coherence phenomena but also confinement induced quantization of the conduction band energies into subbands or discrete levels start to influence system properties. Such devices are preferentially realized on semiconductors because of the relatively large Fermi wavelengths and small effective masses in these materials. Presently, the fabrication of mesoscopic devices in semiconductors starts in most cases from the two-dimensional (2 D) electron system in metal-oxide-semiconductor (MOS) structures or epitaxially grown heterojunctions [1], In these systems the electrons are strongly bound at the interface so that the system is quantum confined in the direction normal to the interface. Free motion is possible only in the remaining lateral dimensions. Most advantageous is that very high mobilities are achievable (up to 107cm2/Vs in present GaAs heterojunctions), correspondingly the elastic mean free path can be as high as several microns, and the carrier density can be tuned over a wide range (up to several 1012cm-2 in Si-MOS structures). The lateral confinement of the 2 D electron system to quasi one-dimensional (ID) wires or quasi zero-dimensional (0 D) electron dots is provided by micro-structuring processes that pattern the device surface [2].


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    T. Ando, A.B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982)ADSCrossRefGoogle Scholar
  2. [2]
    “Proc. of the 33rd International Symposium on Electron, Ion and Photon Beams”, Monterey 1989, published in J. Vac. Sci. Technol. B 7, 1373 (1989)Google Scholar
  3. [3]
    T.N. Theis, Surf. Sci. 98, 515 (1980)ADSCrossRefGoogle Scholar
  4. [4]
    L. Zheng, W.L. Schaich, and A.H. MacDonald, Phys. Rev. B 41, 8493 (1990)ADSCrossRefGoogle Scholar
  5. [5]
    E. Batke, D. Heitmann, and C.W. Tu, Phys. Rev. B 34, 6951 (1986)ADSCrossRefGoogle Scholar
  6. [6]
    M. Tewordt, E. Batke, J.P. Kotthaus, G. Weimann, and W. Schlapp, in: “High Magnetic Fields in Semiconductor Physics II”, G. Landwehr, ed., Springer Series in Sol. St. Sc. 87, 297, Springer Verlag, Berlin (1988)Google Scholar
  7. [7]
    A.C. Warren, D.A. Antoniadis, and H.I. Smith, Phys. Rev. Lett. 56, 1858 (1986)ADSCrossRefGoogle Scholar
  8. [8]
    J. Alsmeier, E. Batke, and J.P. Kotthaus, Phys. Rev. B 40, 12574 (1989)CrossRefGoogle Scholar
  9. [9]
    J. Alsmeier, E. Batke, and J. P. Kotthaus, Phys. Rev. B 41, 1699 (1990)ADSCrossRefGoogle Scholar
  10. [10]
    W. Hansen, M. Horst, J.P. Kotthaus, U. Merkt, Ch. Sikorski, and K. Ploog, Phys. Rev. Lett. 58, 2586 (1987)ADSCrossRefGoogle Scholar
  11. [11]
    A.V. Chaplik and D. Heitmann, J. Phys. C 18, 3357 (1985)ADSGoogle Scholar
  12. [12]
    W. Kohn, Phys. Rev. 123, 1242 (1961)ADSCrossRefzbMATHGoogle Scholar
  13. [13]
    W. Hansen, in: Festkörperprobleme, Advances in Sol. St. Phys. 28, U. Rössler, ed., 121, Vieweg, Braunschweig (1988)Google Scholar
  14. [14]
    U. Mackens, D. Heitmann, L. Prager, J. P. Kotthaus, and W. Beinvogl, Phys. Rev. Lett. 53, 1485 (1984)ADSCrossRefGoogle Scholar
  15. [15]
    M.V. Krasheninnikov and A.V. Chaplik, Fiz. Tekh. Poluprovodn. 15, 32 (1981) [Sov. Phys. Semicond. 15, 19 (1981)]Google Scholar
  16. [16]
    G. Eliasson, J.-W. Wu, P. Hawrylak, and J.J. Quinn, Sol. St. Commun. 60, 41 (1986)ADSCrossRefGoogle Scholar
  17. [17]
    V. Cataudella and V.M. Ramaglia, Phys. Rev. B 38, 1828 (1988)ADSCrossRefGoogle Scholar
  18. [18]
    C. Dahl, Phys. Rev. B 41, 5763 (1990)ADSCrossRefGoogle Scholar
  19. [19]
    U. Wulf, E. Zeeb, P. Gies, R.R. Gerhardts, and W. Hanke, preprintGoogle Scholar
  20. [20]
    V. Cataudella, Phys. Rev. B 38, 7828 (1988)ADSCrossRefGoogle Scholar
  21. [21]
    W. Que and G. Kirczenow, Phys. Rev. B 37, 7153 (1988)ADSCrossRefGoogle Scholar
  22. [22]
    W. Que and G. Kirczenow, Phys. Rev. B 39, 5998 (1989)ADSCrossRefGoogle Scholar
  23. [23]
    A. V. Chaplik, Superlattices and Microstructures 6, 329 (1989)ADSCrossRefGoogle Scholar
  24. [24]
    V. Shikin, T. Demel, and D. Heitmann, Surf. Sc. 229, 276 (1990)ADSCrossRefGoogle Scholar
  25. [25]
    Q. Li and S. DasSarma, Phys. Rev. B 40, 5860 (1989)ADSCrossRefGoogle Scholar
  26. [26]
    D.B. Mast, A.J. Dahm, and A. L. Fetter, Phys. Rev. Lett. 54, 1706 (1985)ADSCrossRefGoogle Scholar
  27. [27]
    D.C. Glattli, E.Y. Andrei, G. Deville, J. Poitrenaud, and F.I.B. Williams, Phys. Rev. 54, 1710 (1985)ADSGoogle Scholar
  28. [28]
    S.J. Allen, F. DeRosa, G.J. Dolan, and C.W. Tu, in Proc. of the 17th Int. Conf. Physics of Semiconductors, J.D. Chadi and W.A. Harrison, eds., 313, Springer, New York (1985)Google Scholar
  29. [29]
    S.J. Allen, Jr. ,H.L. Stornier, and J.C. M. Hwang, Phys. Rev. B 28, 4875 (1983)ADSCrossRefGoogle Scholar
  30. [30]
    T. Demel, D. Heitmann, P. Grambow, and K. Ploog, Phys. Rev. B 38, 12732 (1988)CrossRefGoogle Scholar
  31. [31]
    F. Brinkop, W. Hansen, J.P. Kotthaus, and K. Ploog, Phys. Rev. B 37, 6547 (1988)ADSCrossRefGoogle Scholar
  32. [32]
    K.-F. Berggren, T.J. Thornton, D.J. Newson, and M. Pepper, Phys. Rev. Lett. 57, 1769 (1986)ADSCrossRefGoogle Scholar
  33. [33]
    J. Alsmeier, Ch. Sikorski, and U. Merkt, Phys. Rev. B 37, 4314 (1988)ADSCrossRefGoogle Scholar
  34. [34]
    T. Demel, D. Heitmann, P. Grambow, and K. Ploog, Superlattices and Microstructures 5, 287 (1989)ADSCrossRefGoogle Scholar
  35. [35]
    U. Merkt, Superlattices and Microstructures 6, 341 (1989)ADSCrossRefGoogle Scholar
  36. [36]
    U. Merkt, Ch. Sikorski, and J. Alsmeier, in: “Spectroscopy of Semiconductor Microstructures”, G. Fasol, A. Fasolino, and P. Lugli, eds., 89, Plenum Press, New York (1989)CrossRefGoogle Scholar
  37. [37]
    L. Brey, N.F. Johnson, and B.I. Halperin, Phys. Rev. B 40, 10647 (1989)CrossRefGoogle Scholar
  38. [38]
    K.Y. Lee, T.P. Smith, III, H. Arnot, CM. Knoedler, J.M. Hong, D.P. Kern, and S.E. Laux, J. Vac. Sci. Technol. B 6, 1856 (1988)CrossRefGoogle Scholar
  39. [39]
    A. Lorke, J.P. Kotthaus, and K. Ploog, Phys. Rev. Lett. 64, 2559 (1990)ADSCrossRefGoogle Scholar
  40. [40]
    B.A. Wilson, S.J. Allen, Jr., and D.S. Tsui, Phys. Rev. B 24, 5887 (1981)ADSCrossRefGoogle Scholar
  41. [41]
    A.L. Fetter, Phys. Rev. B 32, 7676 (1986)CrossRefGoogle Scholar
  42. [42]
    S.A. Govorkov, M.I. Reznikov, A.P. Senichkin, and V.l. Talyanskii, Pisma Zh. Eksp. Teor. Fiz. 44, 380 (1986) [JETP Lett. 44, 487 (1986)]Google Scholar
  43. [43]
    V.l. Talyanskii, M. Wassermeier, A. Wixforth, J. Oshinowo, J.P. Kotthaus, I.E. Ba-tov, H. Nickel, and W. Schlapp, Surf. Sc. 229, 40 (1990)ADSCrossRefGoogle Scholar
  44. [44]
    Ch. Sikorski and U. Merkt, Phys. Rev. Lett. 62, 2164 (1989)ADSCrossRefGoogle Scholar
  45. [45]
    T.P. Smith, B.B. Goldberg, P.J. Stiles, and M. Heiblum, Phys. Rev. B 32, 2696 (1985)ADSCrossRefGoogle Scholar
  46. [46]
    T.P. Smith, III, W.I. Wang, and P.J. Stiles, Phys. Rev. B 34, 2995 (1986)ADSCrossRefGoogle Scholar
  47. [47]
    D. Weiss and K. v. Klitzing, in: “High Magnetic Fields in Semiconductor Physics”, G. Landwehr, ed., Springer Series in Sol. St. Sc, 71, 57, Springer, Heidelberg (1987)Google Scholar
  48. [48]
    S.E. Laux, D.J. Frank, and F. Stern, Surf. Sc. 196, 101 (1988)ADSCrossRefGoogle Scholar
  49. [49]
    T.P. Smith, III, H. Arnot, J.M. Hong, C.M. Knoedler, S.E. Laux, and H. Schmid, Phys. Rev. Lett. 59, 2802 (1987)ADSCrossRefGoogle Scholar
  50. [50]
    T.P. Smith, III, K.Y. Lee, C.M. Knoedler, J.M. Hong, and D.P. Kern, Phys. Rev. B 38, 2172 (1988)ADSCrossRefGoogle Scholar
  51. [51]
    W. Hansen, T.P. Smith,III, K.Y. Lee, J.A. Brum, C.M. Knoedler, J.M. Hong, and D.P. Kern, Phys. Rev. Lett. 62, 2168 (1989)ADSCrossRefGoogle Scholar
  52. [52]
    A. Kumar, S.E. Laux, and F. Stern, preprint (1990)Google Scholar
  53. [53]
    R. II. Silsbee and R.C. Ashoori, Phys. Rev. Lett. 64, 1991 (1990)ADSCrossRefGoogle Scholar
  54. [54]
    V. Fock, Z. Phys. 47, 446 (1928)ADSCrossRefzbMATHGoogle Scholar
  55. [55]
    G.W. Bryant, Phys. Rev. Lett. 59, 1140 (1987)ADSCrossRefGoogle Scholar
  56. [56]
    P.A. Maksym and T. Chakraborty, Phys. Rev. Lett. 65, 108 (1990)ADSCrossRefGoogle Scholar
  57. [57]
    for a review, see T. Chakraborty and P. Pietilinen, “The Fractional Quantum Hall Effect”, Springer Series in Sol. St. Sc. 85, Springer, New York, (1988)CrossRefGoogle Scholar
  58. [58]
    T.P. Smith, III, K.Y. Lee, J.M. Hong, C.M. Knoedler, C.H. Arnot, and D.P. Kern, Phys. Rev. B 38, 1558 (1988)ADSCrossRefGoogle Scholar
  59. [59]
    W. Hansen, T.P. Smith, III, K.Y. Lee, J.M. Hong, and CM. Knoedler, Appl. Phys. Lett. 56, 168 (1990)ADSCrossRefGoogle Scholar
  60. [60]
    M.A. Reed, J.N. Randall, R.J. Aggarwal, R.J. Matyi, T.M. Moore, and A.E. Wetsel, Phys. Rev. Lett. 60, 535 (1988)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Wolfgang Hansen
    • 1
  1. 1.Sektion PhysikUniversität MünchenMünchen 22F. R. Germany

Personalised recommendations