Starting Set Determinaton

  • Paul T. Beurskens
Part of the NATO ASI Series book series (NSSB, volume 274)


For most practical applications of direct methods it is convenient to distinguish the following stages:
  1. (a)

    the initiation: how to get started.

  2. (b)

    the middle stage: phase generation and phase refinement.

  3. (c)

    the final selection of the most probable phase set.

In this chapter we discuss some practical aspects of (a) and (b) with emphasis on the determination of the starting set. But how to choose starting reflections depends on what we plan to do with them!


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beurskens, P.T., 1963, Technical report on Sign Correlation by the Sayre Equation. The Crystallography Laboratory, University of Pittsburgh, Pennsylvania.Google Scholar
  2. Beurskens, P.T., 1964, A computer procedure for the systematic application of Sayre’s equation for solving the phase problem for the analysis of centrosymmetric structures, Acta Cryst., 17:462.CrossRefGoogle Scholar
  3. Beurskens, P.T., 1965, Thesis, University of Utrecht, The Netherlands.Google Scholar
  4. Beurskens, P.T., and Prick, P.A.J., 1981, A fast algorithm for determining phase values for symbols from weighted symbol relations in direct methods, Acta Cryst., A37:180.CrossRefGoogle Scholar
  5. Beurskens, P.T., and van den Hark, Th.E.M., 1975, Application of sigma-3 and pair-relationships in polar space groups, Acta Cryst., A31:S14.Google Scholar
  6. Beurskens, P.T., and van den Hark, Th.E.M., 1980, Phase correlation with calculated cosine invariants for routine structure analysis, in Theory and practice of direct methods in crystallography, edited by M.F.C Ladd and R.A. Palmer, Plenum Press, New York.Google Scholar
  7. Declercq, J.P., Germain, G., and Woolfson, M.M., 1975, On the application of phase relationships to complex structures VIII. an extension of the magic-integer approach, Acta Cryst., A31:367.CrossRefGoogle Scholar
  8. De Vries, A., 1965, The correlation method. A systematic use of the interrelationship between sign relations, Acta Cryst., 18:473.CrossRefGoogle Scholar
  9. Germain, G., Main, P., and Woolfson, M.M., 1970, On the application of phase relationships to complex structures II. Getting a good start, Acta Cryst., B26:274.CrossRefGoogle Scholar
  10. Giacovazzo, C, 1977, A general approach to phase relationships : the method of representations, Acta Cryst, A33:933.CrossRefGoogle Scholar
  11. Hauptman, H., and Karle, J., 1953, Solution of the phase problem, I. The centrosymmetric crystal, A.C.A. Monograph No. 3.Google Scholar
  12. Karle, J., and Hauptman, H., 1956, A theory of phase determination for the four types of non-centrosymmetric space group 1P222 2P22 3P12 3P22, Acta Cryst., 9:635.CrossRefGoogle Scholar
  13. Karle, I.L., and Karle, J., 1963, An application of a new phase detennination procedure to the structure of cyclo(hexaglycyl) hemihydrate, Acta Cryst., 16:969.CrossRefGoogle Scholar
  14. Schenk, 1974, On the use of negative quartets, Acta Cryst., A30:477.Google Scholar
  15. Sheldrick, G.M., 1980, Multisolution experiences, in Direct methods in crystallography, N.A.T.O. Advanced Study Institute, Summerschool York.Google Scholar
  16. Overbeek, A.R. and Schenk, H., 1978, in Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld and G.C. Bassi; Delft: Delft University Press.Google Scholar
  17. Van den Hark, Th.E.M., 1976, Thesis, University of Nijmegen, The Netherlands.Google Scholar
  18. Viterbo, D., and Woolfson, M.M., 1973, The determination of structure invarients I. Quadrupoles and their uses, Acta Cryst., A29:205.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Paul T. Beurskens
    • 1
  1. 1.Crystallography LaboratoryToernooiveldNijmegenThe Netherlands

Personalised recommendations